Filter sensitivity targeting for RNA similarity searches

Eric P. Nawrocki and Sean R. Eddy
HHMI Janelia Farm Research Campus
19700 Helix Drive
Ashburn VA 20147
http://selab. janelia.org/

May 25, 2009

Motivation:

Covariance models (CMs) are profile probabilistic models for RNA similarity search that score both se-
quence and secondary structure conservation. The practical application of CMs has been limited by the high

computational complexity of their dynamic programming search algorithms.

Results:

We present a filtering technique for CM searches called filter sensitivity targeting (FST) that determines filter
thresholds to maximize speed while maintaining a target level of sensitivity. When applied to HMM filtering,

FST speeds up CM searches by about 25-fold while sacrificing very little sensitivity on our benchmark.

Availability:

The source code for INFERNAL 1.01, which includes FST, and the benchmark are downloadable from
http://infernal. janelia.org. INFERNAL is freely licensed under the GNU GPLv3 and should
be portable to any POSIX-compliant operating system, including Linux and Mac OS/X.

Contact: {nawrockie, eddys}@janelia.hhmi.org

Introduction

Computational methods for searching for homologous RNAs in sequence databases benefit from scoring
both primary sequence and RNA secondary structure conservation. Many tools have been developed which
take different approaches to how RNA sequence and secondary structure constraints should be integrated
and scored. Some tools implement specialized rules for a specific RNA family, such as tRNAs [1, 2],
snoRNAs [3, 4], microRNAs [5, 6], or SRP RNAs [5, 6]. Some approaches use pattern matching methods
and expertly designed query patterns [7]. The most general approaches take as input any RNA (or RNA
multiple alignment), and construct an appropriate statistical scoring system (often called a profile) that
allows quantitative ranking of putative homologs in a target sequence database [8—10].

Stochastic context-free grammars (SCFGs) provide a natural statistical framework for combining se-
quence and (non-pseudoknotted) secondary structure conservation information in a single consistent scor-
ing system [11-14]. A particular formulation of profile SCFGs, the covariance model (CM), was developed
specifically for the RNA similarity search problem. A CM is a probabilistic model built from a single RNA
sequence or multiple alignment with consensus secondary structure annotation marking which positions of
the alignment are single stranded and which are base paired. A CM is organized as a binary tree of dif-
ferent types of states that model different sequence and structural features of the RNA family they model.
For example, there are different state types for single stranded residues, basepairs, insertions, and deletions.
The states include position specific scores for the four possible residues at single stranded positions, the
sixteen possible base pairs at paired positions, and for insertions and deletions relative to the consensus
sequence and structure. These scores are log-odds scores derived from the observed counts of residues,
base pairs, insertions and deletions in the input alignment, combined with prior information derived from
structural ribosomal RNA alignments. CM construction and parameterization has been described in more
detail elsewhere [12, 157 , 16].

A major use of CMs is within the RFAM database, which contains alignments and CMs for over a
thousand RNA families [17]. RFAM uses CM similarity searches to annotate RNAs in the RFAMSEQ,
a 120 Gb nucleotide database derived from the EMBL database [?]. A recent independent benchmark
of RNA similarity search found CM-based methods to be the most sensitive, but also the slowest, of the
several that were tested [18]. The high computational complexity and resulting slow speed of CM dynamic
programming search algorithms have been a large obstacle to their practical application.

Two complementary approaches have been taken to mitigate this high computational cost. The first is

to accelerate the CM CYK similarity search dynamic programming algorithm. We introduced a banded
variant of CYK that reduces the average case time complexity from LN?“ to LN'3, for a query of length
N residues (or consensus alignment columns) and a target database of length L, at a small cost to sensitivity
[16]. The second approach is to reduce the search space (decrease L) by using a filter to quickly prune away
regions of the database that are unlikely to contain high scoring hits to the CM. The CYK algorithm is then
only used on the surviving fraction of the database.

Several filtering techniques have been developed for CMs. RFAM uses a BLAST-based filter on the
RFAMSEQ target database prior to searching with CMs. All sequences from the CM training alignment are
used as queries, any target subsequence scored with an E-value less than 1000 to any query survives the filter
and is searched with the CM. Weinberg and Ruzzo introduced two types of HMM filters, “rigorous filter”
HMMs ([19]) and “ML (maximum likelihood) HMMs” [20]. Rigorous filter HMMs are parameterized to
provably allow all target subsequences that score better than a preset CM score threshold to survive. ML
HMMs are built to be as similar as possible to the CM. ML HMM filtering aims to prune away 99% of
the target database by setting the filter survival threshold so that a predicted 1% of the database will score
better than it. Zhang et al. [21] have described keyword based techniques for filtering that require a database
subsequence contain at least one of a pre-generated list of keywords to survive the filter. Their technique is
similar to HMM rigorous filters in that all hits above a preset CM score threshold are guaranteed to survive.

An important tradeoff exists between the acceleration gained and the sensitivity lost from using a filter.
Acceleration is dependent on the speed of the filtering technique and the fraction of the database that sur-
vives the filter. The sensitivity loss depends on the ability of the filter to recognize (and not prune away)
possible high scoring CM hits. The aforementioned filtering strategies prioritize speed versus sensitivity
differently. Weinberg/Ruzzo ML HMM filtering is designed for speed by pruning away a target fraction of
the database. Alternatively, filter survival thresholds can be set to achieve a target sensitivity. For example,
with Weinberg/Ruzzo rigorous filter HMMs and Zhang/Bafna keyword filters, the survival threshold is set
so that 100% of the target subsequences that score better than a preset CM threshold will survive, regardless

of the resulting survival fraction.

Approach

We propose a technique for determining filter survival thresholds that will achieve any target level of sen-

sitivity. This technique, which we call filter sensitivity targeting (FST), is similar to Weinberg/Ruzzo’s

rigorous filters and Zhang/Bafna’s keyword filters in that it prioritizes sensitivity over speed, but differs in
that it does not provably sacrifice zero sensitivity. A potential advantage of FST over the other methods is
that it may be faster (by pruning away more of the database) while sacrificing an acceptably small amount
of sensitivity. First, we describe the general FST procedure, which can be applied to any type of filter for
any type of similarity search method. Then we focus on the application of FST to HMM filtering for RNA

similarity searches with CMs.

Determining filter survival thresholds by filter sensitivity targeting (FST)

Filtered database searches involve two search algorithms, which we will refer to as the filfer algorithm and
the final algorithm. The database is scored first with the filter algorithm, and surviving subsequences, or hits,
are rescored with the final algorithm. We define the sensitivity F' of a filter as the fraction of database hits
that survive the filter (score above a filter survival score threshold 7') that a non-filtered search with only the
final algorithm would report (score above a reporting score threshold C'). FST is a procedure for estimating
the appropriate 7' to use to achieve F' sensitivity for a search using threshold C'. The only required input of

the procedure is the desired F', and a set of IV test sequences. There are three main steps to FST:

1. Score N test sequences using both the filter and final algorithms.

2. Create two lists of the sequences. Sort list 1 by increasing final score. Sort list 2 by increasing filter

score.
3. For sequence ¢ = 1 to IV, with final score C}, in list 1:

e Prune list 2 to only include the (N — i + 1) sequences with final score >= C;
o Set the filter threshold 7; equal to the (F' x (N — i + 1)) ranked filter score from pruned list 2.

e Save (T;, C;) as a filter survival threshold/final reporting threshold score pair.

When finished, each (7, C) pair indicates a filter survival score threshold 7' to use when searching
with final reporting threshold C' to theoreatically achieve filter sensitivity F'. If the test sequences are a
representative sample of the real target homologous sequences, then in the limit of very large N and infinite
database searching, using (7', C) in this way will achieve sensitivity F'. In other words, the larger and more
representative of real homologs the set of test sequences is, the more accurate, and consequently useful, the

FST approach is.

A caveat to the procedure is that in step 3, as ¢ approaches IV, (/N — 1), the number of test sequences used
to determine T;, approaches zero. Because the accuracy of FST depends on the number of test sequences
being large, it’s reasonable to set a max on ¢, in practice we use 0.9x N, so that at least 0.1 [V test sequences
are used to determine all (7', C') pairs.

Figure 1 shows data for the FST procedure for three anecdotal RNA families using N = 10,000 and
F = 0.993. Each small point represents a sequence, with x-coordinate equal to filter score and y-coordinate
equal to final score. The larger points are a subset of the (7', C') pairs. For each (7', C') point, the fraction of
small points with y > C' that have x < T'is 1 — F' = 0.007, these represent the 0.7% of sequences that a

non-filtered search would find that a filtered search will not find.

Source of test sequences

An important question is: how do we obtain the test sequences? One approach is to use known examples of
homologs. Weinberg and Ruzzo essentially suggested a special case of the FST strategy to define thresholds
for ML HMM filters for CM searches by using the RFAM “seed” sequences as the IV sequences and requiring
an F' of 1.0. (They ultimately decided on using filter survival thresholds that would eliminate 99% of the
target database as their thresholding strategy.) The seed sequences are the sequences in the RFAM structural
alignment used to build the CM. Alternatively, the RFAM “full” sequences could be used, which are all the
sequences that score above an expertly curated score threshold (chosen as the score of the highest scoring
obvious false positive) in a BLAST filtered CM search of the RFAMSEQ database.

For structural RNAs, there are two drawbacks to using known homologs as the IV test sequences. First,
the number of known homologs is usually small. The median number of seed plus full sequences per RNA
family in RFAM release 9.1 (by far the largest public database of RNAs) is 50, with 100 or more sequences
in 30% of the families, and 1000 or more sequences in only 6%. This is problematic because the accuracy
of FST depends on IV being large. Secondly, known homologs are unlikely to be a representative sample of
the sequences the CM would classify as homologous with stastically significant scores. Alignments of the
seed sequences are used to build and paramterize the models themselves, and as a result those sequences
are a biased sample of very high scoring sequences. The full sequences have been detected using a BLAST
filter and, presumably, are also a biased, high scoring sample (although it is impossible to be certain without
doing a prohibitively expensive non-filtered CM search for comparison). CM parameterization has recently

been significantly improved for remote homology detection [16], with the adaptation of informative mixture

Dirichlet priors and entropy weighting from profile HMM implementations. In order for a FST calibrated fil-
ter to maintain that increased sensitivity, the test sequences must include lower scoring, but still statistically
significant, remotely homologous sequences.

An alternative source of the test sequences is to take advantage of the generative capacity of CMs as
probabilistic models and sample the test sequences directly from the model. This approach addresses the
requirements of our strategy. [V can be large because sampling is fast and infinitely repeatable, and sampling
draws sequences from the CM’s own probability distribution, which is exactly the distribution of homologs
the CM is modelling. Figure 2 illustrates the difference in the CM score distributions of random sequences
(solid lines), known (RFAM seed and full sequences, dotted lines), and sampled sequences (dashed lines)
for three anecdotal RNA families: tRNA, 5S rRNA, and SRP RNA. In all three cases, the known sequences

are biased towards high scores relative to the sampled sequences.

Scoring and sampling sequences

CM similarity search algorithms assign a bit score to a target database subsequence. The bit score B is a

log odds score: B = log, ig#%' P

the CM. The Inside dynamic programming algorithm calculates this value by summing the probability of all

(seq|CM) is the probability of a target subsequence according to

possible paths 7 through the model that generate the subsequence, thatis: P(seq|CM) = Y P(seq, 7|CM).
[14]. P(seq|null) is the probability of the target sequence given a “null hypothesis” model of the statistics of
random sequence. The null model is a simple one-state hidden Markov model (HMM) that says that random
sequences are i.i.d. sequences with a specific residue composition, which is equiprobable across the four
RNA nucleotides (0.25 each). Therefore the null model score is calculated as: P(seq|null) = 0.25" for a
sequence of length L. Because this null model score depends only on the length of the target sequence, and
not the sequence itself, B increases monotonically with P(seq, 7|CM) for a constant L. As the probability
that a sequence was generated from the CM increases, so does it’s score. This suggests that sampling
from the disbribution defined by: P(seq, 7|CM) should yield high scoring sequences. This is confirmed
anecdotally for three families in Figure 2 for which the scores of the vast majority of sampled sequences are
significantly better than random.

Sampling a sequence from a CM is a recursive procedure that begins at the root state and samples a tree
of states, called a parsetree, and sequence residues, until all branches of the tree terminate at end states. The

emitted sequence associated with a parsetree is generated from outside to inside (as opposed to from left to

right from an HMM). When singlet or basepair emitting states are visited a single residue or basepair residue,
respectively, is sampled from the state’s emission probability distribution. If the emitting state is a singlet
left-emitting state, the sampled residue is appended on the right (3”) to the left half of the nascent sequence.
Conversely, if the emitting state is a singlet right-emitting state, the sampled residue is appended on the left
(5’) to the right half of the sequence. Basepair states behave as both a left-emitting and right-emitting state,
emitting one residue to the left and one to the right. Finally, when bifurcation states are visited, two new
paths are created, one beginning at the left child state and one at the right child state, and each of these paths
is continued until an end state is reached. The time complexity of the sampling procedure is O (V) time for
a CM of N states. Roughly 10,000 paths can be sampled from average sized CM per second.

CMs can be locally or globally configured [22?]. In global mode, the only way to enter and exit the
model is through the root state and end states, respectively. In local mode, begins and ends are possible from
any internal node of the model. Further, when a local end takes place, a special insert state is visited that can
emit additional sequence. Local ends allow CMs to tolerate insertions or deletions of entire substructures,

increasing sensitivity for remote homology detection in some cases.

Practical limits on filter survival thresholds

When finding survival threshold 7', FST prioritizes sensitivity over speed by ignoring the effect using 7" will
have on the running time of a filtered search. We can further prioritize sensitivity over speed by enforcing
a maximally useful filter survival threshold 7},,4., and to use min (T, T)q.) for any FST derived T'. This
can only increase the sensitivity of the filter (because 7}, < T') at a cost to speed. However, 1},,4, can be
chosen so that the effect on the total running time is negligible.

The running time (¢) of a filtered search is the time required to run the filter on the full target (¢ ;) plus
the time required to run the final algorithm on the full target (¢,,,) multiplied by the fraction that survives the
filter (S). Thatis, ¢ = ty + S * t,,. The survival fraction S is controlled by the survival threshold T": as T
increases, S decreases, and vice versa. Because t is directly affected by S, a reasonable way to enforce a

Tmaz 18 to use a single query independent S,,;,,, and converting it to a 7,4, for each query. This requires

a way of converting between S and 7', which is straightforward if E-values are available: S = % where
F is the E-value for T using the filter scoring algorithm, 7 is the database size, and L is the average length
of a surviving fraction of the database from the filter. The appropriate choice of \S,,;, is likely to be highly

dependent on the ratio of running times of the filter and final scoring algorithms. We investigate reasonable

Smin values to use for HMM filtered CM searches based on empirical performance in a benchmark below.

Using the banded CYK algorithm as a second filter

In some cases, using two filters in succession, or chain filtering, can compound the resulting accelera-
tion without sacrificing sensitivity [?]. Previously, we developed a banded version of the CYK dynamic
programming (DP) algorithm for CM similarity search called query-dependent banding (QDB) [16] that
precalculates regions of the DP lattice that have negligible probability and ignores those regions during the
DP recursion for greater speed. In our benchmarks, QDB offered about a four-fold speedup at a small cost
to sensitivity. This work on filtering led us to reevaluate the primary use of QDB CYK, testing it as a filter
for the more sensitive and time consuming Inside algorithm, instead of as a standalone, final algorithm for
similarity search. Rather than use FST to determine thresholds for CYK filtering, we tried a simpler, query-
independent strategy of setting the filter E-value threshold as 100 times the final algorithm threshold. We

discuss our results below.

Implementation

FST for CM similarity searches has been implemented in INFERNAL version 1.01 [23]. The filtering al-
gorithm is the HMM Forward algorithm with a reimplementation of Weinberg/Ruzzo’s ML HMMs [20].
FST thresholds are determined for two different main algorithms, the CYK and Inside CM search algo-
rithms. INFERNAL also implements approximate E-values for HMM Forward and CM CYK and Inside
scores. E-values are integral to the FST implementation because they allow a predicted survival fraction .S
to be calculated from a bit score 7. FST is executed using N sampled sequences for a single target sensi-
tivity, F', by INFERNAL’s cmcal ibrate program for both local and globally configured CMs. By default,
N = 10,000 and F' = 0.993 but both values can be changed by the user. The resulting pairs of survival
thresholds 7" and reporting thresholds C' are stored in the CM save file and read by the cmsearch program
when a database search is executed. (To avoid storing N = 10, 000 points, a representative set of a few hun-
dred (7', C) pairs is saved in which no two C' values C1, Cs (C1 < C3) with E-values E; and Fs (E1 > E3)
follow s — Ey < (0.1 * Ey).) For a search with final algorithm CYK or Inside with reporting threshold
C’, T from the CYK/Inside (7', C) pair in the CM file with the maximum C' < C’ is selected and T is set
as the filter surviving threshold. The search proceeds by scanning each target sequence in the database with

the filter. For any subsequence i..5 that scores above 7', the subsequence j — W + 1. + W — 1 is flagged

as a surviving subsequence. (I is the maximum hit length defined as dmax(0) from the band calculation
algorithm using 3 = 107 [16]a). If a second round of filtering is used (as discussed below), it is used in
the same manner, but only on the surviving subsequences from the first filter. The final algorithm is used
to rescore subsequences that survive all filtering stages. The complete INFERNAL ANSI C source code is

included in the Supplementary Material.

Evaluation

To measure the effect of FST and CYK filtering methods on the speed, sensitivity and specificity of RNA
similarity searches, we used an improved version of our internal RFAM-based benchmark [16, 23]. Briefly,
this benchmark was constructed as follows. The sequences of the seed alignments of 503 RFAM (release 7)
families were single linkage clustered by pairwise sequence identity, and separated into two clusters such
that no sequence in one cluster is more than 60% identical to any sequence in the other. The larger of the
two clusters was assigned as the query (preserving their original RFAM alignment and structure annotation),
and the sequences in the smaller cluster were assigned as true positives in a test set. We required a minimum
of five sequences in the query alignment. 51 RFAM families met these criteria, yielding 450 test sequences
which were embedded at random positions in a 10 Mb “pseudogenome”. Previously we generated the
pseudogenome sequence from a uniform residue frequency distribution [16]. Because base composition
biases in the target sequence database cause the most serious problems in separating significant CM hits
from noise, we generated a more realistic pseudogenome sequence using a 15-state fully connected hidden
Markov model (HMM) trained by Baum-Welch expectation maximization [14] on genome sequence data
from a wide variety of species. Each of the 51 query alignments was used to build a CM and search the
pseudogenome in local mode, a single list of all hits for all families were collected and ranked, and true and
false hits were defined (as described in Nawrocki and Eddy [16]).

The minimum error rate (MER) (“equivalence score”) [24] was used as a measure of benchmark per-
formance. The MER score is defined as the minimum sum of the false positives (negative hits above the
threshold) and false negatives (true test sequences which have no positive hit above the threshold), at all
possible choices of score threshold in the ranked list of all hits from the 51 searches. The MER score is
a combined measure of sensitivity and specificity, where a lower MER score is better. We calculate two
kinds of MER scores. For a family-specific MER score, we choose a different optimal threshold in each

of the 51 ranked lists, and for a summary MER score, we choose a single optimal threshold in the master

list of all hits. The summary MER score reflects the performance level for a large scale analysis of many
families because it demands a single query-independent E-value reporting threshold for significance. The
family-specific MER score indicates the performance that could be achieved with manual inspection and
curation of the hits in each family to determine family specific E-value thresholds.

Using this benchmark, we addressed several questions about the performance of FST calibrated HMM
filtering and CYK filters.

First, we had to determine the most sensitive CM search strategy irrespective of speed so that we had
a best-case performance against which to judge the filtered searches. We tested the Inside and CYK algo-
rithms, both with and without query-dependent bands (QDBs). For the banded runs we used a 3 = 10~1°
tail loss probability for QDB calculation that previous work has indicated sacrifices essentially zero sensi-
tivity [16]. As shown in Table 1, using the banded Inside algorithm resulted in the lowest summary and
family specific MER of the four methods tested (rows 1-4 in Table 1). Interestingly, banded Inside outper-
forms non-banded Inside (row 1 in Table ??); this is because enforcement of the bands eliminates about a
dozen high scoring alse positive hits that drive up the MERs. This result led us to use banded Inside with
3 = 10~ as the final (post-filtering) search strategy when benchmarking filtered search strategies.

Next, we addressed FST parameterization. What is the best value to use for the F' parameter, which
specifies the fraction of sequences allowed below the filter score threshold? The black solid points in Fig-
ure 3 shows the benchmark running time of FST calibrated HMM filtered searches versus MER for different
values of F. The choice of F'is a tradeoff of accuracy for speed. We chose a default of /' = 0.993 as
a reasonable value that obtains a speedup of about 25-fold with a minimal loss of accuracy (Figure 3 and
Table 1, row 3 compared to 13).

What is the best value to use for the .S,,;, parameter, which specifies the minimum target survival
fraction .S’ during filter thresholding? Table 1 shows benchmark results for FST HMM filtering with F' =
0.993 and three different S,,,;,, values (rows 14-16). We choose to set the default S,,,;,, = 0.02 because it
gives a slightly lower MER than not enforcing an S,,;, (row 10) at about a 10% cost in running time. The
effect of Sy = 0.02 can be seen in more detail in Tables 2 and 3. Table 2 shows that although enforcing
Smin significantly reduces the speedup for families in which the FST determined S is less than 0.02, it has
a small overall effect on the total speedup. Table 3 compares the speedup and filter sensitivity of using no
Smin and using Sp,;, = 0.02 for different final reporting thresholds, showing that although the time cost

of enforcing S,,,;, = 0.02 increases as the final threshold becomes more strict, the boost to sensitivity also

10

increases.

How much does FST calibrated HMM filtering impact sensitivity and specificity? Tables 1, 2 and 3
demonstrate FST’s impact on benchmark performance. Table 2 shows that the actual sensitivity (actual F')
achieved by the filter on our benchmark is 0.924. The summary and family MER for an HMM filtered
search using F' = 0.993 and S,,;, = 0.02 are 144 and 134 (Table 1 row 10 down from 130 and 109 for a
non-filtered search (row 3).

How does using FST to determine filter thresholds compare to using a single target survival fraction S as
a thresholding method? Figure 3 plots benchmark summary MER versus running time for different filtering
strategies: FST with various F' values and target .S thresholding for various .S values. Target .S thresholding
is faster than FST for achieving MER values down to about 160, but FST is faster if lower MERs are desired.
Tables 1, 2, and 3 also compare FST with target survival fraction target S methods.

Is FST robust to a wide range of final E-value thresholds? With FST, the filter threshold increases
as the final threshold increases (becomes more strict), increasing the filter’s efficiency while theoretically
maintaining the same level of sensitivity, F'. Table 3 shows the effect of varying the final E-value threshold
on the sensitivity and speed of FST calibrated HMM filters on the benchmark dataset. As E decreases, the
sensitivity remains relatively constant while the speedup increases, until £ = le — 3 is reached, at which
point sensitivity begins to decrease, suggesting FST is less reliable for stricter thresholds. Fortunately,
enforcing Sy, = 0.02 corrects this problem. This is because many FST calibrated thresholds for final
thresholds £/ < 1e — 3 correspond to S < 0.02, so enforcing Sy, lowers the filter threshold and increases
sensitivity.

What impact does the QDB CYK filtering approach have on speed, sensitivity and specificity? Rows 6-9
of Table 1 show benchmark performance using only a CYK filter with QDB and different tail loss 3 values.
The filter thresholds were determined using a simple scheme, by setting the filter E-value threshold as 100
times the final E-value threshold. This thresholding strategy proved adaquate, using it with a CYK filter with
3 = 10719 results in about a four-fold speedup with a negligible loss in sensitivity relative to a non-filtered
run (row 3). Further, this strategy yields significantly better performance than running non-filtered CYK
with identical 3 = 10719 (row 5), while only requiring about 10% longer to run. This clearly suggests it is
more useful to use QDB CYK as a filter for Inside than as the final scoring algorithm as we did previously
[16].

Is it useful to combine a FST calibrated HMM filter and a QDB CYK filter? As mentioned above, FST

11

calibrated HMM filters with F' = 0.993 and Sy,;,, = 0.02 result in about a 25-fold speedup and QDB
CYK filters with 8 = 1070 result in about a four-fold speedup. Combining these two filtering strategies
by running the HMM first, searching the surviving fraction with QDB CYK, and using Inside only on the
fraction that survives both, results in about a three-fold speedup relative to only using HMM filters with a
negligible loss of accuracy (compare rows 15 and 18 of Table 1. This strategy is about 70 times faster than
the top performing strategy, non-filtered Inside search with 3 = 10715 at a small cost to sensitivity. And
it is more than 200 times faster than non-banded Inside, while achieving a lower summary MER. Based on

this, we’ve made this two filter strategy the default filtering strategy in INFERNAL version 1.01.

Discussion

FST is a general method for determining filter survival score thresholds to achieve a target level of sensitivity
that can be applied to any database similarity search method. It is particularly easy to apply FST to search
methods that use generative probabilistic models because the requisite test sequences for the threshold cal-
ibration can be sampled directly from the model. Here, we have explored the performance of FST on RNA
similarity searches with CMs using this sampling technique, and show that on our benchmark, using HMM
filters with FST calibrated thresholds reduces running time by 25-fold with a modest cost to sensitivity.

FST calibrated thresholds are query-dependent, and are most advantageous relative to query-independent
thresholds, such as the target .S thresholding method, for filtering methods in which different queries require
significantly different surivival thresholds to achieve high sensitivity. We expect this is mostly true for
filtering methods that score sequences in a qualitatively different way than the final search method, as in
the case reported here which uses HMMs to filter, that score only primary sequence conservation, for CMs,
which score both primary sequence and secondary structure conservation. However, when the filter scoring
metric is more closely related to the final metric, simpler thresholding strategies, such as picking a single
query independent threshold that empirically performs well on a benchmark may be more reasonable. This
is the case with our experiments using the CM CYK algorithm as a filter for the CM Inside algorithm.

FST calibrated thresholds are also dependent on the reporting threshold of the final search method. This
is demonstrated for CM filtering by the trajectory of the large, open circle points in Figure 1 that indicate
filter threshold/final threshold pairs (7', C') pairs. As the CM reporting score threshold increases from a to b,
the filter survival threshold necessary to maintain sensitivity also increases because the filter can now afford

to miss hits in the score range a to b without affecting sensitivity. And as this survival threshold increases,

12

so does the acceleration gained from the filter. This feature of FST is useful for search methods where
the reporting threshold chosen by users can vary widely for different applications. This is the case with
CMs, where searches can range in magnitude from RFAM’s annotation of the 120 Gb RFAMSEQ database,
to searches in a prokaryotic genome of a few Mb. A reporting threshold of £/ = 1 in these two types of
searches corresponds to significantly different bit scores because of the large size difference of the databases
being searched, thus the survival reporting threshold will differ markedly between them, offering greater
acceleration for the large RFAMSEQ search than for the prokaryotic genome search.

The slow speed of CM searches has been the most serious obstacle to the use of INFERNAL for annotating
RNAs in databases and genomes. Without using filters, running the most sensitive CM search algorithm with
INFERNAL version 1.01 required about 1500 hours to complete our benchmark search of 51 families against
both strands of a 10 Mb database. We have shown that by combining FST calibrated HMM filters and QDB
CYK filters with F', Sy, and 3 parameters that do not significantly compromise specificity or sensitivity,
the running time drops 70-fold to about 20 hours. Eventually, we want to be able to use INFERNAL to
annotate RNAs in large genomes in at most a few days. If our benchmark results hold for the general case,
to run the 1371 RFAM release 9.1 families against the entire human genome would require about 20 CPU
years (compared to 1500 CPU years for a non-filtered search), which means further acceleration remains an
important goal of INFERNAL development.

We can imagine several ways to make INFERNAL faster. One is to use faster filters. A new version
(3.0) of the HMMER software package is in it’s last throes of development, and includes significantly faster
HMM search algorithm implementations than those in INFERNAL 1.01. We plan to incorporate those im-
plementations within INFERNAL for filtering. Other possible filtering strategies include using BLAST-like
algorithms, or keyword based methods such as those described by Zhang et al. [21]. But the HMM fil-
ters are not the rate limiting step in CM searches, the time required to run the filter on our benchmark is
about one third the total time of the search (Table 1 rows 18 and 19). So, unless we can design filters with
lower survival fractions, the maximum acceleration we can gain from faster filters is about 33%. A com-
plementary approach is to write faster implementations of the final CM search algorithms, Inside and CYK.
Ongoing work on HMMER 3 has suggested that optimizing the dynamic programming search algorithm
implementations using single-instruction multiple data (SIMD) paralellism could yield significant speedups.
Developing these improvements — and incorporating them into a widely useful, freely available codebase —

are priorities for us.

13

Acknowledgements

We thank Goran Ceric for his unparalleled skill in managing Janelia Farm’s high performance computing

resources.

Funding

EPN and SRE are supported by the Howard Hughes Medical Institute.

References

[1]

[2

[3]

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

T. M. Lowe and S. R. Eddy. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucl. Acids Res., 25:955-964,
1997.

D. Laslett and B. Canback. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucl. Acids Res., 32:11-16, 2004.
T. M. Lowe and S. R. Eddy. A computational screen for methylation guide snoRNAs in yeast. Science, 283:1168-1171, 1999.

P. Schattner, S. Barberan-Soler, and T. M. Lowe. A computational screen for mammalian pseudouridylation guide H/ACA RNAs. RNA, 12:15-25, 2006.
E. C. Lai, P. Tomancak, R. W. Williams, and G. M. Rubin. Computational identification of Drosophila microRNA genes. Genome Biol., 4:R42, 2003.
L. P.Lim, M. E. Glasner, S. Yekta, C. B. Burge, and D. P. Bartel. Vertebrate microRNA genes. Science., 299:1540, 2003.

T. J. Macke, D. J. Ecker, R. R. Gutell, D. Gautheret, D. A. Case, and R. Sampath. RNAMotif, an RNA secondary structure definition and search algorithm.
NAR, 29:4724-4735, 2001.

D. Gautheret and A. Lambert. Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J. Mol.

Biol., 313:1003-1011, 2001.

S. Zhang, B. Haas, E. Eskin, and V. Bafna. Searching genomes for noncoding RNA using FastR. IEEE/ACM Trans. Comput. Biol. Bioinform., 2:366-379, 2005.

Z. Huang, Y. Wu, J. Robertson, L. Feng, R. Malmberg, and L. Cai. Fast and accurate search for non-coding RNA pseudoknot structures in genomes. Bioinfor-

matics, 24:2281-2287, 2008.

Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian, K. Sjélander, R. C. Underwood, and D. Haussler. Stochastic context-free grammars for tRNA modeling. Nucl.
Acids Res., 22:5112-5120, 1994.

S. R. Eddy and R. Durbin. RNA sequence analysis using covariance models. Nucl. Acids Res., 22:2079-2088, 1994.

M. P. Brown. Small subunit ribosomal RNA modeling using stochastic context-free grammars. Proc. Int. Conf. Intell. Syst. Mol. Biol., 8:57-66, 2000.

R. Durbin, S. R. Eddy, A. Krogh, and G. J. Mitchison. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press, Cambridge UK, 1998. ISBN 0521629713.

S.R. Eddy. A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure. BMC Bioinformatics, 3:

18, 2002.

14

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

E. P. Nawrocki and S. R. Eddy. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput. Biol., 3:¢56, 2007.

P. P. Gardner, J. Daub, J. G. Tate, E. P. Nawrocki, D. L. Kolbe, S. Lindgreen, A. C. Wilkinson, R. D. Finn, S. Griffiths-Jones, S. R. Eddy, and A. Bateman. Rfam:
Updates to the RNA families database. Nucl. Acids Res., 37:D136-D140, 2009.

E. K. Freyhult, J. P. Bollback, and P. P. Gardner. Exploring genomic dark matter: A critical assessment of the performance of homology search methods on

noncoding RNA. Genome Res., 17:117-125, 2007.

Z. Weinberg and W. L. Ruzzo. Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy. Bioinformatics, 20 Suppl. 1:

1334-1341, 2004.
Z. Weinberg and W. L. Ruzzo. Sequence-based heuristics for faster annotation of non-coding RNA families. Bioinformatics, 22:35-39, 2006.

S. Zhang, 1. Borovok, Y. Aharonowitz, R. Sharan, and V. Bafna. A sequence-based filtering method for ncRNA identification and its application to searching

for riboswitch elements. Bioinformatics, 22:e557-e565, 2006.
R.J. Klein and S. R. Eddy. RSEARCH: finding homologs of single structured RNA sequences. BMC Bioinformatics, 4:44, 2003.
E. P. Nawrocki, D. L. Kolbe, and S. R. Eddy. Infernal 1.0: Inference of RNA alignments. Bioinformatics, in press, 2009.

W. R. Pearson. Comparison of methods for searching protein sequence databases. Protein Sci., 4:1145-1160, 1995.

15

predicted survival fraction (S)

1.0 1E-2 1E-4 1E-6 1E-8 1E-10 1E-12
I N N NN IR N N N N N N S |

704 :1E—15
tRNA - 0
60 F1E-12 <
CiEg o
50 C1E-9 &
S o
3 40 ~1E-6 %
7]
A= 304 F1E-3 =
2 20 C S
= 7 1 N
© 104 F1E3 N
- o
o L1ies =
—104 A C K
T T T T T T T 1E9
-10 0 10 20 30 40 50
HMM bit score
predicted survival fraction (S)
1.0 1E-3 1E-6 1E-9 1E-12 1E-15 1E-18
100 T N Y A O Y I T
-1E-21 o
90 55 FRNA . . . E1E_18 =
E1E-15 M
<
g CIE12 g
F1E9 €
3 :1E9 S
= F1E-6 =
- E1E3 g
3 N
O - N
HF1E3 O
C <
F1Ee 5
| | | | | | | | 1E9

-10 0 10 30 40 50 60 70

20
HMM bit score

predicted survival fraction (S)
1.0 1E-4 1E-8 1E-12 1E-16 1E-20 1E-24 1E-28
111111111111111111111111111111_

1804 SRP:RNA . L 1E44 ©
160 L
(D140:
O 120+
3100

B S N B R s pe m m ey ey
0 20 40 60 80 100 120

HMM bit score

Figure 1: CM Inside scores versus HMM Forward scores during FST calibration. Complete data for
the FST calibration with N = 10,000 and F' = 0.99 of three anecdotal Rfam 9.1 families: 5S rRNA,
tRNA, and RNase P (RF00001, RF00005, RFO0011). Each sequence is represented as a black point with
x-coordinate equal to it’s HMM Forward score, and y-coordinate equal to it’s CM Inside score. Red circles
indicate the representative set of saved filter survivalltgreshold T and CM reporting score threshold C pairs
saved to the CM file and used to determine thresholds during searching. The CMs used for sampling and

scoring, and HMMs used for scoring were locally configured.

60000 tRNA
8 average length = 74
© 50000
oy random
>]
240000
& led
30000 sample
‘S P L f e kNOWN
& 20000 .~ \
2 J \
; S
€ 10000 e \
c // \
0 //‘ _________________ \\\§
T T T T T
0 20 40 60 80
bit score
12000 5S rRNA
g average length=116
o
& 10000
o) random
3 8000
3
4= 6000 known
° sampled
© 4000 TN
o] / N\, s
/7 \,
g 2000 P N ~
c) N
0_ —/, :"- - \\ ______
I I I I I I I I
-20 0 20 40 60 80 100 120
bit score
pso SRP RNA
8 average length = 294
o
$ 2004 random
>
o 150
(]
S
100
E sampled known
£ 50 A\
2 ME TN VAR
< 0 -k~ ,___‘__,___._':.___,::_a_ff-{""P ¢ '\-"-,._,'-._.',Y\,;'_'_:_.
T T T T T
0 50 100 150 200

bit score

Figure 2: CM score histograms of random, known, and sampled sequences for three RNA families.
CMs were built from RFAM 9.1 seed alignments using default parameters in INFERNAL 1.01 for three
families: tRNA (RF00005), 5S rRNA (RF00001), and SRP RNA (RF00017). “random” sequences were
generated independently for each family using a single state HMM with equiprobale emission probabilities
(0.25) for the four possible RNA bases to be a specific length L, the average length of each family. The
“sampled” sequences were sampled from locally configured CMs using the cmemit program of INFERNAL
v1.01. The “known” sequences are the combination of the “seed” and “full” sequences from RFAM. All the
sequences were scored using the non-banded Inside algorithm, and the scores were collated into a histogram
of bit scores. The number of “random” and “sampléd” sequences was set per family to be equal to the

number of “known” sequences for that family: 261, 247 for tRNA, 57, 766 for 5S, and 1187 for SRP.

0 240

0.95
L ® @®x HMM filter using FST calibrated thresholds with F=x
> Oy HMM filter using predicted survival thresholds with S=y
= 220- HMI_/I'_ only
_9 .0.975
E 200 - o %
o o
Ct) 1E-4 @’ %
q) 1 80— 1E—3o .0.986
E 4£-39
@58
-] 1 60_ 0.01 o 0.99
E 005 005 007 Q.)O' 015 025
e— o 0.5
- 0991~ o ° o
= _ () Q09 o
E 140— 0-993 " 0.995 0.996 0.998 ® no
10 fitter
+
| | | | | | | |
0.5 1 2 5 10 20 50 100

Figure 3: MER versus time for the benchmark. Solid black points show benchmark performance for
HMM filtered searches using query-dependent FST calibrated filter thresholds with target sensitivity F' = =,
with z labelled per point. Open-circle points show benchmark performance for HMM filtered searches using
a single, query-independent, target survival threshold of S = y, with y labelled per point. There are two
additional “+” points: “HMM only”: HMM Forward algorithm as the final scoring algorithm (with no
filters); “no filter” Inside with QDB (3 = 10~ ') as the final algorithm. For the FST searches Sy, = O..

time (minutes per Mb per query)

All searches performed with INFENRAL 1.01. Note that the x-axis is in log-scale.

18

-t
(@)
|

Infernal v1.01 (no filters)
_ 1478.4 hours
0.8 J

P Y Lld
cmnr=e®
o

Sensitivity (fraction of true positives)

RaveNnA 0.2f default (with filters) -
HMM only 43.0 hours g
0.4 7.4 hours ""',_/
.ﬂ"fp-""‘.’
--F-‘---.'.r-’
0.2 [
....... Jo]
BLAST-FPS
0.12 hours
0.0-
| | | | | | |
0.001 0.005 0.01 0.05 0.10 05 1.0

false positives per MB searched per query

Figure 4: ROC curves for the benchmark. Plots are shown for INFERNAL 1.01 non-filtered CM searches,
default filtered searches, and HMM only searches, and for RAVENNA 0.2f searches and for family-pairwise-

searches (FPS) with BLASTN.

19

filtering with HMM filtering with CM post-filtering summary | family time

algorithm | FSTF Sp,in | target S | algorithm QDB 3 algorithm QDB 3 MER MER | (min/Mb/query)

1 - - - - - - Inside - 150 115 280.60
2 - - - - - - CYK - 156 133 102.16
3 - - - - - - Inside 1015 130 109 89.13
4 , - - - - - CYK 10~15 153 130 30.60
5 - - - - - - CYK 10—10 154 132 21.97
6 - - - - CYK 10-13 Inside 10-15 131 114 30.08
7 - - - - CYK 10—10 Inside 10-15 130 114 24.24
8 - - - - CYK 10~7 Inside 10—15 134 118 17.42
9 - - - - CYK 104 Inside 1015 142 127 10.18
10 | Forward - - 0.02 - - Inside 10-15 160 149 0.95
11 Forward - - 0.10 - - Inside 10-15 156 142 3.16
12 | Forward - - 0.25 - - Inside 10-15 149 131 7.46
13 Forward | 0.993 - - - - Inside 10—15 145 135 3.73
14 Forward | 0.993 0.01 - - - Inside 1015 144 134 3.84
15 Forward | 0.993 0.02 - - - Inside 10—15 143 133 3.99
16 | Forward | 0.993 0.10 - - - Inside 10-15 143 132 5.64
17 Forward - - 0.02 CYK 10—10 Inside 10—10 161 154 0.68
18 Forward | 0.993 0.02 - CYK 10—10 Inside 10-15 143 134 1.26
19 - - - - - - HMM Forward - 214 204 0.39

Table 1: Benchmark MER and timing statistics for different search strategies. Each search strategy is
defined by the algorithms and parameters used by zero, one or two filtering stages and a final post-filtering
stage. Under “filtering with HMM”: “algorithm” lists if an HMM filter is applied first (“Forward”), or not
at all (“-”); “FST F™ lists the target sensitivity F' used for FST threshold calibration, or “-” if FST was not
used; “Syin” s the minimum predicted survival fractions used to set filter thresholds (potentially overriding
the FST calibrated thresholds); “target S” shows the single, target predicted survival fraction used for all
modles in non-FST HMM filtering strategies. Under “filtering with CM”: “algorithm” lists if a CM “CYK”
filter is applied (only on the surviving subsequences from the HMM filter if one was used) or not at all (*-”),
and “QDB J” lists the tail loss probability used to calculate bands for the algorithm. Under “post-filtering”:
“algorithm” lists the main algorithm used for scoring subsequences that survive the <= 2 filtering stages;
“QDB (” lists the tail loss probability for the band calculation for the main algorithm. The sensitivity and
specificity of each strategy is summarized by “summary MER” and “family MER” as explained in the text.
Lower MERsS are better. “min/Mb/query” list minutegper Mb (1,000,000 residues) of search space per query
model used to search. The benchmark contains 51 query models and 20 Mb of search space (both strands of

the 10 Mb pseudogenome) as explained in the text.

Predicted survival fraction (S) non- FST HMM filtering FST HMM filtering Non-FST HMM filtering
range for FST HMM filter # # filtered | (F' = 0.993,10 Syin) | (F = 0.993, Sphin = 0.02) | single threshold (S = 0.02)
(F'=0.993,n0 Siyin) query test #found | actual F’ speedup | actual I speedup | actual F' speedup
(nofiltery S =1.0 2 52 43 1.000 1.0 1.000 1.0 0.581 70.9
10> § >=0.1 11 98 76 0.987 10.6 0.987 10.6 0.974 79.3
01> S >=1le—2 17 165 135 0.919 52.8 0.919 51.0 0.911 88.6
le-—2> S >=1le—3 8 54 48 0.854 150.8 0.854 72.1 0.854 80.9
le-3> S >=1le—4 7 53 31 0.807 185.0 0.871 103.0 0.871 121.2
le—4> S >=1le—5 4 6 4 1.000 90.4 1.000 57.8 1.000 67.6
le-5> § >0 2 22 4 0.750 265.5 0.750 121.6 0.750 143.6
all 51 450 341 0.924 239 0.930 22.3 0.871 93.4

Table 2: Comparison of filter sensitivity and benchmark acceleration for queries with different FST
predicted filter survival fractions. The 51 query benchmark families were categorized based on the pre-
dicted survival fraction S of a FST filtered HMM benchmark search with final reporting threshold £ = 1.
FST was performed with /' = 0.993 and no S,;, value. Column 1 lists the survival fraction category;
the first row “no filter S = 1.0” corresponds to queries for which FST indicates S >= 1.0 so the HMM
filter is turned off. The next three columns list the number of query families (“# query”), total number of
test sequences (“# test”), and number of the test sequences that the main algorithm scores with £ <=1
(“non-filtered # found”). The remaining six columns compare three filtering strategies: FST HMM filtering
using F' = 0.993 and no S,,,;,, value (this is row 10 in Table 1), FST HMM filtering with F' = 0.993 and no
Smin = 0.02 (row 12 in Table 1), and non-FST filtering setting thresholds that give a predicted S = 0.02
(row 14 in Table 1). For each strategy: “actual F™ lists the filter sensitivity per category, the fraction of the
test sequences the main algorithm scores £ <= 1 that also pass the filter score threshold and survive the
filter; “speedup” lists the per-category acceleration of a filtered search versus a non-filtered search in the
benchmark. Only HMM filters were used (no CYK filters). The main algorithm used was Inside with QDBs

calculated with 5 = 10715,

21

main algorithm E-value corresponding non- FST HMM filtering FST HMM filtering Non-FST HMM filtering
reporting threshold database size for filtered | (F' = 0.993,1n0 Spuin) | (F = 0.993, Sphin = 0.02) | single threshold (S = 0.02)
(database size =20 Mb) E = 1 threshold # found | actual F' speedup | actual F' speedup | actual F' speedup
E=1le—-5 2Tb 250 0.880 108.5 0.984 66.3 0.980 89.0
E=1le—-4 200 Gb 268 0.892 91.9 0.974 60.8 0.966 89.0
E=1e—-3 20 Gb 285 0.902 73.1 0.965 53.6 0.940 89.0
E=1le—2 2Gb 298 0.920 38.2 0.960 3255 0.920 89.0
E=1le—-1 200 Mb 324 0.926 29.2 0.954 26.1 0.904 89.0
E=1 20 Mb 341 0.924 239 0.930 22.3 0.871 89.0
E=10 2Mb 355 0.913 15.4 0.916 14.8 0.851 89.0
E =100 200 Kb 368 0.910 49 0.913 4.8 0.834 89.0
E = 1000 20 Kb 391 0.910 2.9 0.910 2.9 0.800 89.0

Table 3: Comparison of filter sensitivity and benchmark acceleration for different main algorithm
reporting E-value thresholds. Column 1 lists F/, the main algorithm reporting E-value threshold in the
benchmark (20 Mb, two strands of a 10 Mb pseudogenome). Column 2 lists the database size in which a
score with E-value F from column 1 corresponds to £ = 1. Column 3 lists the number of the 450 test
sequences the main algorithm scores with an E-value < F from column 1. The remaining six columns
compare the same three filtering strategies as in Table2 by filter sensitivity (“actual F”) and acceleration of
a filtered search versus a non-filtered search (“speedup”). Filter sensitivity is the fraction of test sequences
the main algorithm scores with an E-value < E from column 1 that also pass the filter score threshold and
survive the filter. Only HMM filters were used (no CYK filters). The main algorithm used was Inside with
QDBs calculated with 3 = 1015,

22

