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Philosophy/Objectives

Learn first principles of DL

Learn applications in molecular biology

Not a survey course

Will implement simplified version of the methods

Learn to use chatbots critically (and without losing your own identity)
Learn to design your own questions

Question the jargon



0,1, ..., 6 blocks

5 quizzes (20%)

6 + 1 homework (70%)



Block week Dates 2026 Description Due
bo bo-wil 01/26,01/28 A single neuron / RNA functional classification [1, 2] hw-b0 out
- 01/30 section b0-wl (Colab,Pytorch)
bl-wil 02/02,02/04  Multi-layer-Perceptron / Protein 2D structure |3, 4] hw_ bl out
W 02/06  section_bl-wl hw_ b0 due
b1
bl-w2 02/09,02/11  Fundamental of Neural Network Training / [5, 6]
02/13  section_bl-w2 quiz_bl
b2-wl 02/18  Convolutional Neural Networks / hw_ b2 out
w DNA/RNA sequence binding motifs [7-9]
b2 02/20  section_b2-wl hw_bl due
b2-w2 02/23,02/25 Recurrent Neural Networks /

02/27

Regulatory motif prediction [10] Splice site prediction [11]
section _b2-w2

quiz_ b2




P 03/23,03/25 Large Language Models (LLMs) [15] hw_ b4 out
it 03/27 section bd-wl hw_ b3 due
b4
ba-w2 03/30,04/01  LLMs for DNA/RNA, [16] proteins, [17-19] and genomes [20]
04/03  section bd-w2 quiz_ b4
b5-wl 04/06,04/08  AutoEncoders / Gene expression profiles [21] hw_ b5 out
: 04/10 section b5-wl hw_b4 due
b5
b5-w2 04/13,04/15  Variational AutoEncoders / scRNA-seq [22]
04/17  section_ b5-w2 quiz_ b5
b6-wil 04/20,04/22  Diffusion Models / Protein design [23] hw_ b6 out
04/24  section_b6-wl hw_ b5 due
b6
b6-w2  04/27,04/29 Graph Neural Networks / Antibiotic discovery [24]
Final homework 05/06 hw_ b6 due
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Some logistics

canvas discussions
video recordings
colab/Google cloud cupons

Questions for sections



The mcb128 Website
http://rivaslab.org/teaching/MCB128_AIMB/



MCB128: AI in Molecular Biology (Spring 2026)

(Under construction)

Home | Schedule | Canvas | Syllabus [PDF] | The Book of Jargon

Lectures: Mon/Wed/Fri 10:30-11:45
Starting: Monday 26 January 2026
Location: Biolabs 1080

teaching team
Dr Elena Rivas
TF: Shivam Gandhi

TF: Armand Ovanessians

TF: Louis Colson
schedule

block

bO: Single neuron
b1: Feed forward
networks

b2: CNNs,RNNs

student hours
Thurs 10:00-12:00
Fri 11:45-13-45
Wed 19:00-21:00
Fri 8:30-10:30

week
RNA functional classification
Perceptrons / Protein 2D structure

Fundamental of neural network
training

Convolutional Neural Networks /
DNA sequence motifs

Residual Neural Networks /
Recurrent Neural Networks

location/zoom
Biolabs #1009
Biolabs #1009
Biolabs #1009
Biolabs #1009

Lectures
b0_lectures

b1_lectures

b2_lectures

Slides

Sections

Outline
Description
Aims and objectives
Prerequisites and background
Course format
Assignments and grading
What to expect from Elena as an instructor?
Policies
o Absence
o Late work
o Academic integrity
o Al policy
Accommodations for students with disabilities

Homework (due
Fri 10pm)
b0_hw due 02/06

Answers




MCB128: AI in Molecular Biology (Spring 2026)

(Under construction)

Home | Schedule | Canvas | Syllabus [PDF] | The Book of Jargon

block 0:
Outline
A single neuron / DNA + Asingle neuron

© Parts of a single neuron (perceptron)
© The space of weig

- [ e
Funtional Classification < What  single neuron can fear: to be a binery classifer

In this lecture, I follow David Mackay very closely. In T
= Backpropagation

particular his lectures 15 and 16, which correspond to = The batch gradient descent learning algorithm for a feedforward network
Chapters 39, 41 and 42 of his book Information Theory, = The on-line stochastic gradient descent learning algorithm
Inference, and Learning algorithms. = How well does the batch learning algorithm do?
= Regularization: beyond descent on the error function

t does a percertron cannot do?
« RNA Functional Classification using  perceptron

The original perceptron dates back to Frank Rosenblatt's
paper “The ap model for
storage and organization in the brain” from 1958.

5 . . . © The perceptron algorithm
As a practical implementation of a simple perceptron in

molecular biology, we will study the work “Use of the
*Perceptron’ algorithm to distinguish transational initiation sites in E. coli
identify translation initiation sites in E.coli.

”*, by Stormo et al. (1986) in which they use a perceptron to
A single neuron
Here is the code associated to this section
A single neuron or perceptron (Figure 1) has
« The inputs X = (x;,... , X)),
« Parameters W = (wy, ..., w;), usually called the weights.
« One output y which is also called the activity,

The neuron adds up the weighted sum of the inputs into a variable called the activation a,

.
ot X win

where Wy called the bias is the activation in the absence of inputs. Y
The activity of the neuron y is a function of the activation function f(a) = y. wg
Several commonly used forms for the activity are
function w w;
2 %@y

Figure 39.1. A single neuron

Figure 1. One neuron (from D. Mackay's chapter 39).
fa) = —

Tre™




The book of Jargon

MCB128: AI in Molecular Biology (Spring 2026)

(Under construction)

Home | Schedule | Canvas | Syllabus [PDF] | The Book of Jargon

The Book of (Deep Learning) Jargon: Outtine

google machine-learning glossary « mputs
© Tokenization

o Categorical variable

Inputs o Embedding (or vector embedding)
© One-hot embedding
- © Dataset
Tokenization « Training set
= Validation set
Categorical variable = Test set
o Feature
A variable that can take a fixed number of values. For example, DNA/RNA nucleotides can o parse Feature
o Labels
be represented as a categorical variable with four possible values A, C, G, T/U. Amino acids o Labeled data
can be represented as a categorical variable with 21 possible values. 5 Unlabeled data
© Batch (or mini-batch)
(or vector ing) © Data leakage
o Data augmentation
An array of numbers (a vector) that represent an input. For instance, the categorical : oumu’lswg‘ls
variable “"RNA nucleotide” could be represented by four vectors of arbitrary dimension o unnormalized
representing A, C, G, and U respectively. o softmax
+ Tensors
One-hot embedding ¢ Broadcasting
o Flattening

© Tensor vs Vector

A vector embedding representing a categorical variable such that each vector has one 1 * Tensor dimensions/ Tensor shape

value, and all the others are zero. o Einsum notation
© Gradient
For instance, the one-hot embedding for the categorical variable "RNA nucleotide” can be | » Models
given as, © Inputs/Input features

o Qutnite







The Wall of Pets/Friends/Plants
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block b0

A single neuron
DNA funtional classification



A single neuron

w1y wr
Ty e ar

Figure 39.1. A single neuron

A single neuron or perceptron (Figure 1) has

e The inputs x = (Xq,... ,X]),
« Parameters w = (wWy,... ,W;), usually called the weights.
« One output y which is also called the activity,

The neuron adds up the weighted sum of the inputs into a variable called the activation a,
I
a=Wwy+ Z Wi X
i=1

where wy called the bias is the activation in the absence of inputs.



wo
wy wr
Ty e Tp

Figure 39.1. A single neuron

activation

1
a = wo + Z Tiwg
i=1

The act

y of the neuron y is a function of the activation function f(a) = y.
Several commonly used forms for the activity are

+ The linear logistic function
1 //,
0 l/ |
5 0 5

f@) =

1
Tre ™

« The sigmoid (tanh) function

£(a) = tanh(a)

1 a>0
f(a) =
® {0 as<0



The space of weights

w0=15 w1=-2 w2=0

EEtert-ta -0
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w0=15 w1=-2 w2=0




The space of weights

wo=15 T wo=s wo=15
wi=2 w2=0.8 wi=2 w2=1.0 wiz2 w2s12




The space of weights

W0=30 wi=4 w2=2 WOST.5 wi=1 w2=0.5
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b0 Wednesday 1/28

colab/Google cloud cupons

Questions for sections

b0_homework due Friday 2/06 at 10 pm
quiz on alternative Fridays—In person
student hours: Wed 7-9pm BL 1009

rec: to read lecture notes before class / lecture notes demo code



Single Neuron (perceptron)

W

1

[, [ x5 [x % % %[ %)) % L [a] >
1x9 — 1x1 1x1
EX a=y’ x WH+W, Y= ﬁ
9x1
inputs weights activation[a] activity[y=f(a)]

activation function f(a) =

true

ify20

false if y < 0

true

output

ify20

false if y < 0

1

1

+ e

oa




What can a single neuron learn?
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What can a single neuron learn?
to be a binary classifier

separate apples from oranges



What

can a single neuron learn?
to be a binary classifier

separate apples from oranges

labeled data
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x1 = skin color (red->yellow)



The learning rule - Supervised
learning

Data: D = {x(,t@, ., x®™ My

Outputs: {yV,...,yN}

Error: {yD —tM, .. y™ —tMN} where we expect these errors to be small.

Learning is equivalent to adjusting the weights

such that the outputs of the network are close to the input labels.
y™ ~tM forall 1<n<N examples



The Error (Loss) Function

Gw) = = T [ 10g(y!™) + (1 = ) log1 ~ )]
wherey = y(x™, w)




Training the perceptron

training = minimize G(w)

Adjust the weights so that G(w) > 0
is as small as possible



Backpropagation - gradient descent

Adjust the weights by gradient

descent

new 0ld __

where the gradient g = 6%&"’)

7 is the learning rate.




A bit of math to calculate
the gradient of the Loss
The error/loss function is
G(w) = = Y0, [Hlog(y™) + (1 — ) log(1 — y(™)]
We want to calculate

3G (w) for 1<k<K.

dwp

The dependency on the weights is hiding in the outputs

(n) — 1 ith (n) — K ()
Y p—c wit WX D k1 Wk - Ty,

Taking the derivative wrt the weights using the chain rule

0G(w w) oy(™)
(S’LU)C Zn 5y(") owy



The gradient of the Loss

The derivative of the loss wrt outputs is
SG(w) e ] gy

The derivative of the outputs wrt to the weights is

sy™ _ (n) e*“’x(n) _ (M), (n n
(%’Tk - xk (1+€—wx("))2 - mk ( )(1 - y( ))’
putting it together

dwg

Taking all derivative together we construct the gradient vector[K],
5G
g = 55;"’) =-3, [t(n) — y(n)} x(n)

The vector

o) — ¢(m) _ (n)

is referred to as the error.



Gradient descent optimization
Wit+1 — Wz‘t o ng(wz‘t)

Batch gradient-descent learning algorithm
Update weights using all training examples

N
W1 =Wwo+ 7 Z {t(") — gy (wo)} x(™

n=1

— w47 Z {tm Y Wl)} <™

On-line gradient-descent learning algorithm
Update weights using one random example at the time

Wi =W+ [t(m) — y(m)(wo)} x™ me [1, N]

Wy = W1 + 1) [t(m’) - y(m/)(wl)] x(™)m/ e [1,N]



skin rightness (smooth->rough)

x2

How well does the learning

algorithm do?

N=10,K=2+1

labeled data

4 6 8 10
x1 = skin color (red->yellow)

Perceptron CrossEntropy: nit 10000
output A
[[1. ]
[1.
[0.99999977]
[0.9997189 ]
[0.37890124]]
output 0
[[3.51725683e-02]
[4.11715013e-02]
[6.06939797e-11]
[6.89159218e-16]
[3.38016132e-19]]

100

Loss

0 2000 4000 6000 8000

Epoch

10000



How well does the learning
algorithm do?

N=10,K=2+1

weights weights start
o w
. . . . . n w2 . end .
2
numbers of iterations wi




How well does the learning
algorithm do?

too well?

iteration 30 iteration 140 iteration 300
o WO=-059wl=159w2=-173 W0 =0.84 w1 =0.15 w2 =-0.39 W0 =2.28W1=-0.16 w2 =-0.32
. . . » . «|
. . .
[ . A . D
X
i ]
2 4 .
° 0 2 4 5 8 100 2 4 6 8 100 2 6 8 0
x1 x1 x1
iteration 3000 iteration 60000 iteration 99999
L WO=B865W1=-0.69w2=-0.92 W0 =29.05 w1 =-1.71 w2 =-3.61 W0 =37.36 Wl =-2.17 w2 =-4.64
. . . . x . .
s “ 1 L &
N . o . .
N > < «
B
2 . . .
°s 2 4 6 8 100 2 4 0 8 10 o 2 4 6 8 10
x1 x1 x1

overfitting



Regularization:
beyond descent on the error
function

Loss(w) = G(w, {x"}N) + aR(w)

where

R(w) =3 >, wj.
only depends on the weights.

The weight update rule in the presence of this regularization becomes



Regularization:
beyond descent on the error
function

’ Loss = G(w,x) + aR(w); «a = weight decay regularizer ‘

iteration 30000 alpha = 0 iteration 30000 alpha = 0.01 iteration 30000 alpha = 0.1
S 10 10 T




What does a perceptron cannot do?

10 Perceptron CrossEntropy: nit 10000
o outpu
(. 1
9 . 1
1.
. [0.99999778]
8 [0.99999971]
[6.99825799]1
output
7 ((0.9999958 ]
[0.99999989]
- [0.9939444 ]
© [0.99880651]
& {0.8981560311
5
us
4
10
3 us
%10
2 . s
2 3 4 5 6 7 8 9 10 ©
Color >
T w00 w0 e 10000
epo

Frank Rosenblatt: The perceptron: a probabilistic model for information
storage and organization in the brain, 1958.

The Ice-Age of machine learning.
Misky & Papert 1968 — Multilayer perceptrons 1980sih



Translation Initiation sites with a
perceptron

Volume 10 Number 9 1982 Nucleic Acids Research

Use of the ‘Perceptron’ algorithm to distinguish translational initiation sites in E. coli

Gary D.Stormo’, Thomas D.Schneider‘, Larry Gold® and Andrzej Ehrenfeucht*

’Depaxtment of Molecular, Cellular and Developmental Biology, and +Department of Computer
Science, University of Colorado, Boulder, CO 80309, USA

Received 26 October 1981; Revised and Accepted 5 April 1982

ABSTRACT

We have used a "Perceptron” algorithm to find a weighting function which
distinguishes E. coli translational initiation sites from all other sites in a
library of over 78,000 nucleotides of mRNA sequence. The "Perceptron”
examined sequences as linear representations. The "Perceptron” is more
successful at finding gene beginnings than our previous searches using "rules”
(see previous paper). We note that the weighting function can find
translational initiation sites within sequences that were not included in the
training set.




Translation Initiation sites in

bacteria
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Translation Initiation sites with a
perceptron

GCAGUA
001001 G [o] A G U A
RNA sequence 010000 — — —
ecaGuA ™ 40100 — > [0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0]
000010 flatten to S[4*L]
seq[L=5] onehot embedding[4][L]




Translation Initiation sites

perceptron

[ c a ] u a S[L,4] = [[0, O, 01, W[L,4] = [[wO01,w02,w03,w04],
st o 6 1o, 6 16 e i 6o e o o1 o e e o 5 1o o w for 37 001 feas o o7 o)
W[4L] = [w01,w02,w03,w04, wO0S5,w06,w07,w08,w09,wl0, wil, wl2, wl3, wld, wl5, wl6,wl7, wi8, wld, w20,w2l, w22, w23 HN] [, 0,10 [w13,wld,wl5,wl6],
b, o, o, 3 o1 e, wio,vzo]
np.dot(S,W) = %, ., S W, [, 0, 0, 011 [w21,w22, w23, w24]]
VO3 + 06 + w05 + w15 + w20 + w22 a = np.sum(s*W) =3, 5. ,S,W,
: E— : v x RBS ify2T
e e T e T T e
not-RBS if y < T
1x4L
s - 1
asgix W, Y= 4
4Lx1
inputs weights activation[a] activity[y=f(a)] output

with a




Gradient descent Learning

» Calculate gradient
B (1—gysm — if S 4s +

9= 720 (L ymyst, if 50 gs —
» Update weights

W« W +mng

Stormo’s training

It defines a threshold T (set to T=0), and does the following updates
» if St and ST-W < T, update: W < W + S+
> if ST and ST -W > T, update: W < W — S5~

» otherwise W remain unchanged



Translation Initiation sites with a
perceptron

The authors mention two advantages of their method over conventional
consensus sequence approach

» Each site S is evaluated quantitatively by S x W.



Translation Initiation sites with a
perceptron

The authors mention two advantages of their method over conventional
consensus sequence approach

» Each site S is evaluated quantitatively by S x W.

» Nothing is specified about the sequences except for their inclusion in

a class.
The algorithm finds the weights that best provide the classification.

This advantage has the side effect that the weights are often hard to
interpret.



Translation Initiation sites with a
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Translation Initiation sites with a
perceptron

Potential issues:

» Scores are not easily comparable
» Weights may be uninterpretable

» All example inputs have to have the same number of features.
problematic if each residue in input sequence is a one-ot feature






