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Feed Forward vs FeedBack Networks

Hopfield Networks are Feedback
memory adquisition/storage/retrieval
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Hopfield Networks is All You Need

Hubert Ramsauer, Bernhard Schéfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler, Lukas Gruber,
Markus Holzleitner, Milena Pavlovi¢, Geir Kjetil Sandve, Victor Greiff, David Kreil, Michael Kopp, Giinter Klambauer,
Johannes Brandstetter, Sepp Hochreiter

We introduce a modern Hopfield network with continuous states and a corresponding update rule. The new Hopfield network
can store exponentially (with the dimension of the associative space) many patterns, retrieves the pattern with one update, and
has exponentially small retrieval errors. It has three types of energy minima (fixed points of the update): (1) global fixed point
averaging over all patterns, (2) metastable states averaging over a subset of patterns, and (3) fixed points which store a single
pattern. The new update rule is equivalent to the attention mechanism used in transformers. This equivalence enables a
characterization of the heads of transformer models. These heads perform in the first layers preferably global averaging and in
higher layers partial averaging via metastable states. The new modern Hopfield network can be integrated into deep learning
architectures as layers to allow the storage of and access to raw input data, intermediate results, or learned prototypes. These
Hopfield layers enable new ways of deep learning, beyond fully-connected, convolutional, or recurrent networks, and provide
pooling, memory, association, and attention mechanisms. We demonstrate the broad applicability of the Hopfield layers across
various domains. Hopfield layers improved state-of-the-art on three out of four considered multiple instance learning problems
as well as on immune repertoire classification with several hundreds of thousands of instances. On the UCI benchmark
collections of small classification tasks, where deep learning methods typically struggle, Hopfield layers yielded a new state-of-
the-art when compared to different machine learning methods. Finally, Hopfield layers achieved state-of-the-art on two drug
design datasets. The implementation is available at: this https URL




From single-neuron perceptron to MLP

x / multi-class
many neurons many layers many outputs
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categorical variable = takes a fix number
of values

The state of a single neuron (active/inactive) (apple/orange) is a binary
categorical variable

Can be re-written using a one-hot representation
output/activity one-hot

t=40,1} &= [t1,12]
t =1(Apple) #(A) = [1,0]
t =0(Orange) ¢(0O)=[0,1]



Easy generalization to more than two
categories

For a categorical variable to distinguish a neuron in one of three states:
Active / Inactive / Refractory

we can use the one-hot encoding
t = [t1,t2,t3]

t(Active) = [1,0,0]
t(Inactive) = [0, 1, 0]
t(Refractory) = [0, 0, 1]

One-hot encoding for categorical variables



MLP

1 neuron / many outputs
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MLP

many neurons / many outputs

single-layer
Perceptron
one output

W[9]+b[1] —

single-layer
Perceptron
many outputs
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MLP

many layers

) Multi-Layer Perceptron
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L e
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MLP: input flattening

Fully Connected Layer

x[l] h[H]
input output
w(l,H], b[H]

weights

softmax

inport numpy as np.
# DNA sequence sequ"ACCTG"

# X[t

141
x2d = np.array([[1,0,0,01,
10,1

# Flatten: x[L,4] => x
x2d_flat = x_2d.flatter

Tint("x", x_2d.shape, "\n", x_2d)

print("x flatten", x_2d_flat.shape, "\n", x_2d_flat)
# T [4,L]
x24T ='x 24,7
PrANT("\mxT", x_2d_T.shape, "\n", x_2d_T)

# Flatten: x ] _flat ast)
X247 flat = x_2d_T. flatten()
PrNE(TX_T flatient, x_2d_T_flat.shape, "\n", x_2d_T_flat)

T(4,L

001000001001 0]

2000001000 10]




MLP: input flattening

import numpy as np X (5, 4)
# DNA sequence seq="ACCTG" [[1 00 0]
v i) [0 10 0]
X[L,
x_2d = np.array([[1,0,0,0], [0 10 Q]
lg%gg} [0 0 0 1]
[0,070.11" (0 01 0]
[0,0,1,011) x flatten (20,)
# Flatten: x[L,4] —> x_flat[Lx4] [1 0000100010000010

x_2d_flat = x_2d.flatten()
print("x", x_2d.shape, "\n", x_2d)

print("x flatten", x_2d_flat.shape, "\n", x_2d_flat) X_T (4p 5)

# x_T [4,L] [[1 000 0]

x24T = x_2d.T [6110 0]

print("\nx_T", x_2d_T.shape, "\n", x_2d_T) [0 200 1]

# Flatten: x_T[4,L] —> x_flat[4xL]] [0 001 0]]

x_;d_T:flat = x_ZdFT.ﬂatten() . X_T flatten (20 )

print("x_T flatten", x_2d_T_flat.shape, "\n", x_2d_T_flat) [1 20000 1'1 200000100



MLP: weights

# Weights and activation
#

# inputs: x[I]
# weights: W[I,H]

#
# a[H] = x[I] @ W[I,H]

# a_h = sum_i=1"I x(i) w(i,h) g —
#

I=20

H

P

*

=15
rint("I1", I, "H", H)

flattening
# seq CCTG"
# x[I] one_hot(seq)
x = np.array([1,0,0,0, X[l] h[H]
9,1,0,0, .
0,1,0,0, input output
0,0,0,1,
) 0,0,1,0]) wll,H], b[H]
print("x[I] = ", x.shape, "\n", x) weights
# initialize weights to 1 I20H15
- L “Heacel00010000010010
w = np.full((I, H), 1) wlI,H] = (20, 15)
print("w[I,H] = ", w.shape, "\n", w) 111111111111111]
111111111111111]
# activation using dot product } % } i } : } } % } }. i } : }}
# 111111111111111]
5 111111111111111]
e gplodiciyoeny . 111111111111111]
# the last axis of the first array: x[I] 111111111111111]
# and the second-to-last axis of the second array: w[I,H] 111111111111111]
# 111111111111111]
#a_h = sun_i=1"T x(i) w(i,h) Tiiiiiiniiiiaing
a = np.dot(x,w) 111111111111111]
print("a[H] =", a.shape, "\n", a) 111111111111111]
111111111111111]
v X 111111111111111]
# activation using @ operator (shorthand for np.matmult) 11111111111111 1}
# a[H] = x[I] @ W[I,H] 111111111111111]
# 111111111111111]
# it performs matrix multiplication in the last two indices of both tensors ,1”1;&5?,1 1111111110
# 555555555555555]
# (different from x element-wise operator) alH] = (15,)
[555555555555555]

a = x@w
print("a[H] =", a.shape, "\n", a)



MLP: weights

I120H15
# Weights and activation x[I] = (20,)
L sy 4 [1000010001000001001 0]
# weights: W[I,H] w[I,H] = (20, 15)
Egu [M11111111111111]
) = SR QLD M11111111111111]
#ah=sum,1=lAIX(1)W(1.h) [111111111111111]
£ o 111111111111111]
W= 111111111111111]
print("I", I, "H", H) 111111111111111]
# seq = "ACCTG" 11111111111111 1]
# xI4] = one_hot(seq) [111111111111111]
e = DRI B0t [111111111111111]
0,1,0,0, [111111111111111]
0,000, 1 111111111111111]
print("x[1] = ", X.shape, "\n", X) [111111111111111]
11111111111111 1]
§i7;f;‘;“ze LS 0 & [111111111111111]
W = np.Full((I, H), 1) [111111111111111]
print("w[I,H] = ", w.shape, "\n", w) [111111111111111]
# activation using dot product 111111111111111]
# [111111111111111]
§ the Tnottenit T the rirst arrays (1] 111111111111111]
# and the second-to-last axis of the second array: wir,yj 1111111111111111]]
# alH] = (15,)
# a_h = sum_i=1"T x(i) w(i,h) [55555555555555 5]
a = np.dot(x,w)
print("al[H] =", a.shape, "\n", a) al[H]l = (15,)

[5555555555555055]

# activation using @ operator (shorthand for np.matmult)
# a[H] = x[I] @ W[I,H]
#

# it performs matrix multiplication in the last two indices of both tensors

#
# (different from x element-wise operator)
#

@w
print("a[H] =", a.shape, "\n", a)



MLP: output softmax

Fully Connected Layer

u B

flattening

softmax

x[1] y[D]  pID]
input

exp(y[d])

pld] =

sum.exp(y)
from scipy.special import softmax
# y[0] raw scores = logits
# [ 8.44582642 2.81670835 3.71839622 11.15438217 10.40262056 2.63662707
# -1.86241886 4.25830586 2.83273711 3.34797951 1.68466004 ©.25169234
=20 -2.12365387 5.65477395 1.41959583 -4.41036154 -0.81778331 1.56173462
mu =3 -6.84739061 14.47486963]
sigma

=4
y = np.random.normal(loc=nu, scale=sigma, size=p)  SOftmax d:rectly calculated
(

print("\nraw scores = logits\n", y)

. ) 3.42242852e-02
1.61379536e-02 6.84101191e-06 7.60693181e-08 3.46263326e-05
8. 1 6.

p = np.exp(y)/np.sun(np.exp(y))

print(“\nsoftmax directly calculated\n", p) 5.85809750e-08 1.39921638e-04 2.02567791e-06 5.9518513%e-09
' 2.16216573e-07 2.33507313e-06 5.20311954e-10 9.47117290e-01]

p = softmax(y) N X

print(“\nsoftmax using scipy.special\n”, p) softmax using scipy.special

. 3 3.4
1.61379536e-62 6.84101191e-06 7.60693181e-08 3.46263326e-05
1 5 2.6405 6. 7

inax = np.argnax(p)
print(“argnax (y)", imax, "y(arnax) = *, ylinax])

5.85809750e-08 1.39921638e-04 2.02567791e-06 5.95185139e-09
2.16216573e-07 2.33507313e-06 5.20311954e-10 9.47117290e-01]
plimax]) argmax (y) 19 p = 14.474869627913282

argmax (p) 19 p = 0.9471172900724417

inax = np.argmax(

print(“argmax (p)", imax, "p(argmax)

# why use softmax for classificationf



MLP: output softmax

from scipy.special import softmax

#y[D]
#

#

D=20

mu =3

sigma = 4

y = np.random.normal(loc=mu, scale=sigma, size=D)
print("\nraw scores = logits\n", y)

p = np.exp(y)/np.sum(np.exp(y))
print("\nsoftmax directly calculated\n", p)

p = softmax(y)
print("\nsoftmax using scipy.special\n", p)

imax = np.argmax(p)

print("argmax (y)", imax, "y(armax) = ", yl[imax])
imax = np.argmax(y)
print("argmax (p)", imax, "p(argmax) = ", plimax])

# why use softmax for classification]?

raw scores = logits

[ 8.44582642 2.81670835 3.71839622 11.15438217 10.40262056 2.63662707
-1.86241886 4.25830586 2.83273711 3.34797951 1.68466004 0.25169234
.12365387 5.65477395 1.41959583 -4.41036154 -0.81778331 1.56173462
-6.84739061 14.47486963]

softmax directly calculated

[2.28046583e-03 8.19084399e-06 2.01802582e-05 3.42242852e-02
1.61379536e-02 6.84101191e-06 7.60693181e-08 3.46263326e-05
8.32319089e-06 1.393 05 2.64 06 6.30022923e-07
5.85809759e-08 1.39921638e-04 2.02567791e-06 5.95185139e-09
2.16216573e-07 2.33507313e-06 5.20311954e-10 9.47117290e-01]

softmax using scipy.special

[2.28046583e-03 8.19084399e-06 2.01802582e-05 3.42242852e-02
1.61379536e-02 6.84101191e-06 7.60693181e-08 3.46263326e-05
8.32319089e-06 1.3933. -05 2.64 06 6.30022923e-07
5.85809759e-08 1.39921638e-04 2.02567791e-06 5.95185139e-09
2.16216573e-07 2.33507313e-06 5.20311954e-10 9.47117290e-01]
argmax (y) 19 p = 14.474869627913282

argmax (p) 19 p = 0.9471172900724417




Why use a softmax output?

» It is a probability distribution! what gives you more information?
> sc(imazx) = 14.475
> p(imaz) = 0.95
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Why use a softmax output?

» It is a probability distribution! what gives you more information?
> sc(imazx) = 14.475
» p(imaz) = 0.95

Can provide significance intervals

Naturally works with the cross-entropy loss (next)

v

v

v

It helps keep scores in range (not too large, not too small)

v

It facilitates optimization by gradient descent



MLP: Loss

Fully Connected Layer

softmax
x[1] y[D]  p[D]
input
one-hot label
t[D]
1 loss =- 3.  t,log(p,)

cross-entropy loss




MLP with one hidden layer

Loss = -3’ t logy,

ias
| W softmax ouput
e ) — BB R/RE x — [y
1x0 1x5 1x3
st "5 ws
) 1 1 ? = 5 z 3
- o | @ = Txw )| 5x3 a = I, h W, + 5
B g etel
9x5 h, = RELU(a)) Y= a2
o

Input layer Hidden layer Output layer
Input dimension =9 Hidden dimension =5 Ouput dimension =3
(xi}:=1 (hj}jﬂ {Yk)i=1

Activation function = RELU




Protein 2D structure
The Qian-Sejnowski Model

a - helix

AREE

mm‘m‘m‘m' B - pleated sheet
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Protein 2D structure

The ribbon representation

Jane Richardson was born
#OTD in 1941

+ Developed the Richardson
(ribbon) diagram to represent
proteins' 3D structure
(becoming a standard
representation for protein
structures)

+ MacArthur Fellow, 1985

+ Elected, Nat'l Academy of
Sciences, 1991

+ President, Biophysical
Society, 2012

#WomenInSTEM
S




bl - MLP Wed 3 Feb 2026
b0 homework due Fri 2/6 11:59pm



Qian-Sejnowski MLP
Labels[3]

alpha helix = [1,0,0] Protein 2D structure
beta sheet = [0,1,0]
random coil = [0,0,1]

[x]
. J
I=13x21 1 &
hj=— % Ve —V——=
’ 1+e% ‘ 50 e
1<3<H k= 1<k<0




MLP with one hidden layer

Loss = -y, t logy,

label

Eﬁﬁ bias
+

[EAEREREEACAEACAEN I S

Input layer

(%)}

1t ia1

]

: = 1t
a) = Z.x W, +b,

1

Input dimension =1=9

Hidden layer

Hidden dimension =H=5
u
(h)",

Activation function = RELU

Output layer
Ouput dimension =0 =3
v 5.




Qian-Sejnowski MLP

inputs: sliding one-hot windows

globin 1 globin 2

MVHLTPEEKSAVTALWGKVNVDEVGGEALRLLVVYPWTQRF = MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF
MVHLTPEEKSAVT

VHLTPEEKSAVTA
HLTPEEKSAVTAL alpha helix(at position 7)
LTPEEKSAVTALW labels[3]
TPEEKSAVTALWG
VYPWTQRF«MLS
training
dataset
ALRLLVVYPWTQR 21 inputs[21,13]
LRLLVVYPWTQRF hoti21]
RLLVVYPWTORF
LVVYPWTORF = M
VVYPWTQRF . ML
VYPWT! ZRF MLS £ 1 (3 3 01030 L3 8
Training examples =N = L1 + L2 +... XIN, 21x13]

t[N, 3]



Training - The loss function
Cross Entropy

Loss = &SN LW bt W2, p%).

LMW b W2 b?) = —Zk Lt logy,i ),

(I will drop the super index for the training example (n) after this)



Perceptron for multiclass classification
EX

Labels

X (¥
H

— I
a, =X, X W, + Db,

y. = softmax(a)j
e?;

a,
5o ey 1<i<T
j’=1 1<3<0




Perceptron for multiclass classification

1%y

Labels

X

L
x[I]
forward pass

_ oI
a, =X, X W, + Db,

¥, softmax(a)j

° t 1 <i<
“2joty logly)) s




Training a multiclass perceptron

forward pass

I
aj =Y x;Wi;+b
1=1

y; = softmaz(a); =

@,
L =— Zt] 10g yj
7=1



Training a multiclass perceptron
stochastic gradient descent (SGD)

L
W}j%mj—oza?/vu 1< < I
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bi b — e 1< <0

AT

WII,0] b[O]



Training a multiclass perceptron
backpropagation
oL
8WZ']'
oL
b,

L—y—a— Wb

I
aj = Z.TZI/VZ] -+ bj
=1

et
y; = softmax(a); =

J Z]/ el

0
L= —thlogyj




Training a multiclass perceptron
backpropagation

I
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Perceptron for multiclass classification

1%y

Xy

x[I]

forward pass

Labels

backwards pass

— I
a, =X, X W, + Db,

J

y softmax(a)j

j

° t 1 <i<
“2joty logly)) s

dw. . = daj X,

1]

da; =-(t;-y;)

de = _tj/yj 1<3i<1

1<5<0

dv =: dL/dv



Perceptron for multiclass classification

class PER:
def _init__(self, I, 0)
# the parameters
self.W = np.random. randn(I, 0) / np.sqrt(I
self.b = np.zeros(0)

def softmax(self, x):
exps = np.exp(x - np.max(x, axis=1, keepdims=True))
return exps / exps.sum(axis=1, keepdims=True)

def forward(self, X):
# X [N,I]
# W[I,0]
#X@Wis [N,0]
a=Xe@ self.W + self.b
y = self.softmax(a)

return a, y

I XN, 17
# t[N,0] one-hot labels
def train(self, X, t, epochs=20, 1r=0.2):
for epoch in range(epochs):
# Forwa
a, y = self.forvard(X)

# cross entropy loss
# t[N,0]

# y[N,0]

# LIN]
L np.sum(t * np.logly + 1le-7), axis=1)
-np.mean(L)

loss

# Backward

# da = dL/da[N,0] =

dL/dW = da * da/dW = da % x
(y - t) / X.shape[0]

X.T @ d

= da. sum(axls 0)

# Update

# Accuracy
if (epoch + 1) % 50 == 0 or epoch
print(f"Epoch {epoch+1}: Loss

0:
loss:.4f})




%]

‘H

%

Multilayer Perceptron (MLP) 1 hidden layer
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Training 1-hidden layer MLP

stochastic gradient descent (SGD)
V[/é — I/Vé - 1<i<1T

oW
oL .
9 N oL
J
oL
b? b — .
AT
W1, H| b'[H]

W2[H,0] $?[0]
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Multilayer Perceptron (MLP) 1 hidden layer

Labels

h[H]
2 _ «H 2 2
al=5 x W+ B a, = ¥, hy W+ b,
i=1 i i
I 3j . 3 3 eai
hj = —al i o a2
l+e% Y., €k
<j<H k=1 <k<0
L = _fj—ltj 1°9(YJ)
2 2 .2
L Yy > 3, wjk bk
1
L - o2 h,—» a W
Y. X




Training 1-hidden layer MLP

I
_ 1 1
= Z 2iWi; +b;
=1

= W+

yr = softmaz(a?)y

o)
= - Z i log yp,
k=1

backpropagation
1

]5W1

5W1:(5 —6(1 T

S df
1 _ J
" J Mj/d_%l

2 2
SW2, = ba2 sy~ doih
day = Z OYw Wy _ Yk — tk
o 5ak
t .
Sy = — 3
J yj



Multilayer Perceptron (MLP) 1 hidden layer

| P
:
.
. ylol
. h[H]
E; forward pass backwards pass
x[I] a=5! x Ww+1 daw! = da® x,
3 i=1 i Tij 3 iJ i 1
h = £(@), % da; = dn,£ (37,
e dhj = :?=1da)2< Wj2'<
2 _ H 2 2 2 2 :
8= L By W by aw’ = da’h,
v,= softmax(a? ) daf =y, -t
1<i<1
y|& = ~E5at log(y) dy, = -t/y, 33

dv =: dL/dv



backpropagation by hand

Multilayer Perceptron (MLP) 1 hidden layer

# cross entropy loss
loss = -np.mean(np.sum(Y_onehot * np.log(probs + 1le-7), axis=1))

# Backward

#

# (h1[N,H])"T @ da2[N,0] = dW2[H, @]
#

da2 = (probs - Y_onehot) / X.shapel[0]
dw2 = hl.T @ da2
db2 = da2.sum(axis=0)

# dWl = dL/dWl = dL/dal x dal/dWl = dal x X
#

# da2[N,0] @ (W2[H,0])~T = dh1[N, H]

#

dhl = da2 @ self.wW2.T

dal = dhl * self.relu_deriv(al)

#
# (x[N,I])"T @ dal[N,H] = dWl[I, H]
#

dwl = X.T @ dal

dbl = dal.sum(axis=0)
# Update

self.W2 -= 1r *x dw2
self.b2 —= 1r * db2
self.Wl -= 1r *x dwl
self.bl —= 1r * dbl



PyTorch is all you need for backpropagation

Multilayer Perceptron (MLP) 1 hidden layer
pytorch code

class ProteinMLP(nn.Module):
# MPL definition
def _init__(self, I, H, 0):
super().__init__()
self.fcl = nn.Linear(I, H)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(H, 0)

# Definition of the forward pass

# inputs are X outputs are Y in logits (not normalized)

def forward(self, x):
self.fcl(x)

elf.relu(x)
x = self.fc2(x)
return x
# Qian & Sejnowski parameters
w =1
= w20
H =40
0=3

# Training set converted to PyTorch tensors
# X are the inputs [N,I]

# Y are the labels [N]

X, Y = encode_dataset(seqs, sst3, w)

X_torch = torch.tensor(X, dtype=torch.float32)
Y_torch = torch.tensor(Y, dtype=torch.long)

# Create the model

model = ProteinMLP(I, H, 0)

# Create the Loss

criterion = nn.CrossEntropyLoss()

# The optimization: Adam

optimizer = optim.Adam(model.parameters(), 1r=0.1)

# The training loop

n_epochs = 1000

for epoch in range(n_epochs):
optimizer.zero_grad()
logits = model(X_torch)
loss = criterion(logits, Y_torch)
loss.backward()
optimizer.step()
pred = logits.argmax(dim=1)

oW oW oR R

Define the MLP model: 1 hidden layer, RELU activation
Sets dimensions: Input = I, Outputs = O, Hidden = H
Assign Loss: CrossEntropyLoss

Assign optimizer for parameter updates: Adam.

For 1000 epochs:

Initialize optimizer

Forward pass: get logits
Compute cross-entropy loss
Backpropagate gradients
Update parameters

clear the gradients of all parameters

Forward pass: get logits (scores for each class).
calculate cross-entropy loss

backward pass: calculate gradients dW = dL/dW
update the parameters: W <- W - lr * dW

predict the class with higher probability




The Cross-Entropy Loss

K-class classification

input x label t € {1,... K}
Outputs (logits) y(0) = (v1, ..., Yx)

covert to categorical probability distributions
q = (tl,...,tK),tZ’ = (S(Z = t)
p(0) = softmaz(y)

objective: optimize weights 6 so that p(0) =~ ¢

minimize KL divergence K'L(q|[p) = >_; qrlog 2




The Cross-Entropy Loss
0" = argming zk: qx log p—]:](k@)
= argming [Z qr log g, — Z Q 10gpk(9)]
k k

= argming — [Z qrlogpr(0)| The cross-entropy

k

Minimizing the cross entropy is equivalent to minimizing the KL
divergence



The Cross-Entropy Loss

why entropy?

The **Shannon information content** of an event with probability p
is

log% = —logp

it quantifies:
“How much information | get by seen this event to happen?”



The Cross-Entropy Loss
The average information content in a probability distribution is called
the entropy of the distribution

H(p) = — >, prlogpy

The maximal information of a categorical distribution, corresponds to
the uniform distribution (p, = 1/K)
H(p) = log(K)

The cross entropy

CE(pllg) = =225 pr1og a
is the amount of uncertainty in one distribution after taking into

account what we know from the other.



Price

Testing the performance of the
model

Increse parameters — overfit to training data

L
8 g
a a
[
Size Size Size
6, +6,x 6,+0,x+6,2 B, +0,x+6,22+ 8,2+ 0,x
High Bias Low Bias, Low Variance High Variance

(Underfitting) (Goodfitting) (Overfitting)



Correct predictions (%)

Overfitting

Train-set/ Test-set leakage
Train set = Globin proteins

85
Test set = homologous N
Globin proteins rJA MLP
80[_ P r NS\ MTrain (40)
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\
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Test (40) { MLP
65
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Correct predictions (%)

Overfitting

Train-set/Test-set NO leakage
Train set = Globin proteins

75
Test set = non-homologous /xfrmm (40)
Globin proteins s~
70+ ;N
//
i N/
"'d
65} //'\\'/ |
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AR O T Test (0)
0] Test (40}
I’I
)
/
/
55 L L 1 1
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Residues trained (x103)

Qian-Sejnowski Figure 8

MLP

Perceptron
Perceptron
MLP



Basics of Neural Networks
Training

Minibatch of data

[ | Mmlba::h Ly 1r
D
st Leamning
Rate, efc.
Initialize
Parameters|
Inference
softmax
—h(x,0) —+ y(x,0)
logits prediction
Inputs Outputs
AUGC
gégg softmax
RUGC — 0001 | —~ = h(x,0) — y(x,0)
real inputs X logits prediction
del it . .
{ombedding) (unnormalized)  (normalized)
Optimization backpropagation/

Gradient descent ?:,(f Tf;l’;" cllﬂs:‘entlatlon

W<-W-1lr * drR/dW a=x*W+b jdW:= dL/dW = da*x

Stochastic Gradient d " y = £(a) da:= dL/da = dy £ (a)

W<-W-1lr * dL /4w L = -t log(y) |dy:= dL/dy =-t/y
'm




Basics of Neural Networks

Training

|___| Minibatch

Dataset Size M

Initialize
Parameters

Minibatch of data

Input Labels
Xi t
1
T
................ forward pass | ...
A4
Neural Loss Empirical Risk
——>
Network h(x,‘ W) L(h(x, W) , t) R=1/M ¥ L
logits m

backwards pass

1r

Learning
Rate, etc.

Update parameters (backpropagation)




Basics of Neural Networks

Training
Minibatch of data
___ Minibatch
Daraser Size M Input Labels 1r
t i Learning
! Rate, etc.
"""""" v
Initialize Neural Loss Empirical Risk
Parameters Network h(X,. W) L(h(x, W) ,t)_’ R=1/M 5 L Optimizer
logits m
backwards pass
Update parameters (backpropagation)
japted fror 5413 N )
Inference
Input
X

softmax
—N(x, ) — y(x, 8)

optimal logits prediction
parameters (unnormalized) (normalized)




Inputs

0100
0010

AUGC —— |0001|—

real inputs

1000

model inputs
(embedding)

Outputs

softmax
Neural hix. 6° .
Network (x. 8) - Y(x, ©)
logits prediction
(unnormalized) (normalized)




Optimization backpropagation/
Gradi automatic differentiation
radient descent (one layer only)
W<-W- 1lr * dR/4W a=x*W+b jdW:= dL/dW = da*x
Stochastic Gradient descent y = £(2) da:= dL/da = dy £'(a)

W<-W-1lr * dL_/aw ||':

-t log(y) |dy:= dL/dy =-t/y




backpropagation/automatic differentiation
MLP with 1 hidden layer

dwW! = da® * da'/dw! = x" * da'
al = x * W + b' %» db' = da' * da'/db'= da'
da' = dy * dy/da’ = dy- £’ (a?)

h = £ (a')
|, dW? = da? * da?/dW? = h* * da?
a?=h * W + b> — 1 ,dn? = da? * da?/db? = da? —»dh = da? * da?/dh = da? * (W})"
y = £,(a%) — 1 »da? = dy * dy/da® = dy.f,’ (a?%)
L = -t log(ly) —Ff—>dy = dL/dy = -t/y
forward pass backward pass

notation: 2 2
dv := dL/dv, 1 <=n <= N (batch dim) x*[I,N]*da’[N,H] = ¥ x(n,i)da’(n,j)=dW [I, H]

1 <= i <= I (input dim) h*[H,N]*da’[N,0] = ¥ h(n,j)da*(n,k)=dW’[H,0]

1 <=j <= H (hidden dim) da’[N,0]* (W?)*[0,H]= §,da’(n, k)W (j, k)=dh[N, H]

1 <= k <= O (output dim)



Fitting the models

» Gradient descent
» Stochastic gradient descent
» Batch and epoch

» Adam (adaptive momentum estimation)



Generalization
Performance on train set — Performance on test set?

under-fit — good-fit A under-fit— good-fit — over-fit under-fit— good-fit— over-fit

testset

testset Loss

Loss testset Loss

trainset trainset

trainset
> 00 > 0 0 >
# of training examples # of parameters # of epochs

o3



Generalization

» Adding more data

» Reduction of parameters adding a bottleneck layer
» Large weights induce overfitting

» Early stopping

» Regularization of large weights with L? or L! norm

» Stochastic regularizations

» Dropout
» Noise injection






