
supervised/unsupervised learning



supervised/unsupervised learning



block b1
Feed Forward Networks
Protein 2D Structure



Feed Forward Networks (FFN)
Multilayer Perceptron (MLP)

Fully Connected Networks (FCN)
Fully Connected Layer (FC)



Feed Forward vs FeedBack Networks

Hopfield Networks are Feedback
memory adquisition/storage/retrieval





From single-neuron perceptron to MLP

Y
true  if y ≥ 0

false if y < 0

W
1

W
I

W
2...

b

x1

xI

Y1

YK

P1

PL

WIK

softmax
V1

VL

WKL

Z1

ZL

WLL

x1

xI

many neurons 

one neuron/one layer 

many layers 

one output 

many outputs 

binary classification 

  multi-class
classification 

Perceptron

Multi-Layer Perceptron



categorical variable = takes a fix number
of values

The state of a single neuron (active/inactive) (apple/orange) is a binary
categorical variable

Can be re-written using a one-hot representation
output/activity one-hot

t = {0, 1} t̄ = [t1, t2]

t = 1 (Apple) t̄(A) = [1, 0]

t = 0 (Orange) t̄(O) = [0, 1]



Easy generalization to more than two
categories

For a categorical variable to distinguish a neuron in one of three states:
Active / Inactive / Refractory

we can use the one-hot encoding
t = [t1, t2, t3]

t(Active) = [1, 0, 0]

t(Inactive) = [0, 1, 0]

t(Refractory) = [0, 0, 1]

One-hot encoding for categorical variables



MLP
1 neuron / many outputs

x
1
x
2 x3

x
4 x5

x
6 x7

x
8
x
9

W
1

W
9

9

Y= 1 + e
1

-a 

1x9

9x1

1x1
Y

a=∑k=1xk Wk+b

x
1
x
2 x3

x
4 x5

x
6 x7

x
8
x
9

W
11

W
91

9

Yl= 

e
+al’

 

1x9

9x4

1x4
Y1

al=∑k=1xk Wkl+bl

W
12

W
92

W
13

W
93

W
14

W
94

Y2 Y3 Y4

1 < l < 4

1 Neuron / 1 output

4 Neurons / 4 outputs

+al 

∑l’=1 e
4



MLP
many neurons / many outputs

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

Y

W
1

W
9

W
2...

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

Y1

Y2

Y3

Y4

W
11

W
13

W
12

W
14

W
91

W
93

W
92

W
94

W[9]+b[1]

W[9,4]+ b[4]

Perceptron

 
Perceptron

b

b1

b9

 
many outputs

 one output

 single-layer

 single-layer

9al=∑k=1xk Wkl+bl

9

Y= 1 + e
1

-a 

a=∑k=1xk Wk+b

Yl= 

e
+al’

 
1 < l < 4

+al 

∑l’=1 e
4

Lorem ipsum



MLP
many layers

x1

xI

Y1

YK

P1

PH

WIK

softmax
V1

VL

WKL

Z1

ZH

WLH

many neurons many layers many outputs 
  multi-class
classification 

Multi-Layer Perceptron

Iak=∑i=1Xi Wik+bk

Yk=f(a)k

Kal=∑k=1Yk Wkl+bl

Vl=f2(a)l

LZh=∑l=1 Vl Wlh+bh Ph= 

e+Zh 

∑h’=1 e
H +Zh’ 



MLP: input flattening
Fully Connected Layer

input  output 

weights 
w[I,H], b[H]

x[I] h[H] 

flattening  
softmax



MLP: input flattening



MLP: weights

input  output 

weights 
w[I,H], b[H]

x[I] h[H] 

flattening  



MLP: weights



MLP: output softmax

input  
x[I] 

flattening  
softmax

y[D] p[D] 

p[d] =  
exp(y[d])  

sum.exp(y)  

Fully Connected Layer



MLP: output softmax



Why use a softmax output?
I It is a probability distribution! what gives you more information?

I sc(imax) = 14.475
I p(imax) = 0.95

I Can provide significance intervals

I Naturally works with the cross-entropy loss (next)

I It helps keep scores in range (not too large, not too small)

I It facilitates optimization by gradient descent



Why use a softmax output?
I It is a probability distribution! what gives you more information?

I sc(imax) = 14.475
I p(imax) = 0.95

I Can provide significance intervals

I Naturally works with the cross-entropy loss (next)

I It helps keep scores in range (not too large, not too small)

I It facilitates optimization by gradient descent



Why use a softmax output?
I It is a probability distribution! what gives you more information?

I sc(imax) = 14.475
I p(imax) = 0.95

I Can provide significance intervals

I Naturally works with the cross-entropy loss (next)

I It helps keep scores in range (not too large, not too small)

I It facilitates optimization by gradient descent



Why use a softmax output?
I It is a probability distribution! what gives you more information?

I sc(imax) = 14.475
I p(imax) = 0.95

I Can provide significance intervals

I Naturally works with the cross-entropy loss (next)

I It helps keep scores in range (not too large, not too small)

I It facilitates optimization by gradient descent



Why use a softmax output?
I It is a probability distribution! what gives you more information?

I sc(imax) = 14.475
I p(imax) = 0.95

I Can provide significance intervals

I Naturally works with the cross-entropy loss (next)

I It helps keep scores in range (not too large, not too small)

I It facilitates optimization by gradient descent



MLP: Loss

input  
x[I] 

flattening  
softmax

y[D] p[D] 

Fully Connected Layer

one-hot label  
t[D] 

loss = -  �d=1 td log(pd)  
D  

cross-entropy loss  



MLP with one hidden layer



Protein 2D structure
The Qian-Sejnowski Model



Protein 2D structure
The ribbon representation



MeiMei

b1 - MLP Wed 3 Feb 2026
b0 homework due Fri 2/6 11:59pm



x1

xI

h1

hH

WIH WHO

 =
 
∑k=1 e
O

eI=13x21

H=40

y1

y3

y2

Qian-Sejnowski MLP
Protein 2D structurealpha helix = [1,0,0]

beta sheet  = [0,1,0]
random coil = [0,0,1]

Labels[3]

ak = ∑j=1 hj Wjk+ bk
H

aj = ∑i=1 xi Wij + bj 
I

hj =
1 + e 

1 
-aj 

1

11 1

1

2

222

yk

O=3

ak

ak

2

2

1≤j≤H 1≤k≤O



MLP with one hidden layer

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1

x2

x3
x4
x5

x6

x7

x8

x9

h1

h2

h3
h4

h5

h1 h2 h3 h4 h5

W11 W15

W91
W95

aj = ∑i=1xiWij +bj 
I

hj = f(a) 

1xI

IxH

1xH

W11 W13W12

W21

2 2 2 

2 

+
W11

HxO

y1 y2 y3

ak = ∑j=1 hj Wjk + bk
H

yk = 

+ak 

1xO

e
∑k’=1e 

+ak’ 
O

11 

y1

y2

y3

   
j

h5

Input layer Hidden layer Output layer

W13

W53

W12

W51 W52

W21 softmax

Input dimension  = I = 9

1

2 

2 

2 

2 

2 2 2 

2 

2 2 2 

1 1

1 1

2 

Lorem ipsum

Hidden dimension  = H = 5 Ouput dimension  = O = 3

Activation function  = RELU

W11

2 W51

.

.

.

b1 b5
1 1

+

1

b1 b3b2
2 

2 2 

2 

W11

W91
1

.

.

.

{xi}i=1
I {yk}k=1

O{hj}j=1
H

t1 t2 t3

1xO

bias

bias
label

ouput

Loss  =     ∑k=1  tk  log yk

O

1  



training 
dataset

0

00 0 0 0 0 0 00

0
0
0
0
0
0

001

0
0
0
0
0
0
0
0
0

0 0

0
0
0
0
1

21

13

MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF

    TPEEKSAVTALWG
   LTPEEKSAVTALW
  HLTPEEKSAVTAL
 VHLTPEEKSAVTA
MVHLTPEEKSAVT

  VYPWTQRF MLS

  VYPWTQRF MLS
 VVYPWTQRF ML
LVVYPWTQRF

RLLVVYPWTQRF

ALRLLVVYPWTQR
LRLLVVYPWTQRF

MVHLTPEEKSAVTALWGKVNVDEVGGEALRLLVVYPWTQRF

inputs: sliding one-hot windows
Qian-Sejnowski MLP

one-hot[21]

alpha helix(at position 7)

labels[3]

inputs[21,13]

globin 1 globin 2

M

Training examples = N = L1 + L2 +... X[N, 21x13] 
t[N, 3] 



Training - The loss function
Cross Entropy

Loss = 1
N

∑N
n=1 L

(n)(W 1, b1,W 2, b2).

L(n)(W 1, b1,W 2, b2) = −
∑O

k=1 t
(n)
k log y

(n)
k .

(I will drop the super index for the training example (n) after this)



x1

xI

y1

YO

WIO

x[I]

y[o]

Perceptron for multiclass classification

Labels

aj = ∑i=1 xi Wij + bj 
I

yj = softmax(a)j

1≤j≤O

t1

to

t[o]

1≤i≤I
= e

∑j’=1 e

aj 

aj’ O



x1

xI

y1

YO

WIO

x[I]

y[o]

Perceptron for multiclass classification

Labels

aj = ∑i=1 xi Wij + bj 
I

yj = softmax(a)j

1≤j≤O

t1

to

t[o]

L = -∑j=1tj log(yj)

forward pass

O
1≤i≤I



Training a multiclass perceptron
forward pass

aj =

I∑
i=1

xiWij + bj

yj = softmax(a)j =
eaj∑
j′ e

aj′

L = −
O∑
j=1

tj log yj



Training a multiclass perceptron
stochastic gradient descent (SGD)

Wij ←− Wij − α
∂L

∂Wij
1 ≤ i ≤ I

bj ←− bj − α
∂L

∂bj
1 ≤ j ≤ O

W [I, O] b[O]



Training a multiclass perceptron
backpropagation

∂L
∂Wij
∂L
∂bj

L→ y → a→ W, b

aj =
I∑
i=1

xiWij + bj

yj = softmax(a)j =
eaj∑
j′ e

aj′

L = −
O∑
j=1

tj log yj



Training a multiclass perceptron
backpropagation

aj =
I∑
i=1

xiWij + bj δWij =:
δL

δWij

= δaj
δaj
δWij

= δaj xi

yj =
eaj∑
j′ e

aj′
δaj =:

δL

δaj
=

∑
j′

δyj′
δyj′

δaj
= −(tj − yj)

L = −
O∑
j=1

tj log yj δyj =:
δL

δyj
= − tj

yj



x1

xI

y1

YO

WIO

x[I]

y[o]

Perceptron for multiclass classification

Labels

aj = ∑i=1 xi Wij + bj 
I

yj = softmax(a)j

1≤j≤O

t1

to

t[o]

L = -∑j=1tj log(yj)

dWij = daj xi  

daj  =-(tj-yj)

1≤j≤O
dyj = -tj/yj

forward pass backwards pass

O
1≤i≤I 1≤i≤I

dv =: dL/dv



Perceptron for multiclass classification



x1

xI

h1

hH

WIH WHO

 =
 
∑k=1 e
O

e

h[H]

y1

yO

ak = ∑j=1 hj Wjk+ bk
H

aj = ∑i=1 xi Wij + bj 
I

hj =
1 + e 

1 
-aj 

1

11 1

1

2

222

yk

ak

ak

2

2

1≤j≤H 1≤k≤O

x[I]

y[o]

Multilayer Perceptron (MLP) 1  hidden layer

Labels

t1

to

t[o]

L = -∑j=1tj log(yj)
O



Training 1-hidden layer MLP
stochastic gradient descent (SGD)

W 1
ij ←− W 1

ij − α
∂L

∂W 1
ij

1 ≤ i ≤ I

b1j ←− b1j − α
∂L

∂b1j
1 ≤ j ≤ H

W 2
jk ←− W 2

jk − α
∂L

∂W 2
jk

1 ≤ k ≤ O

b2k ←− b2k − α
∂L

∂b2k
.

W 1[I,H] b1[H]
W 2[H,O] b2[O]



x1

xI

h1

hH

WIH WHO

 =
 
∑k=1 e
O

e

h[H]

y1

yO

ak = ∑j=1 hj Wjk+ bk
H

aj = ∑i=1 xi Wij + bj 
I

hj =
1 + e 

1 
-aj 

1

11 1

1

2

222

yk

ak

ak

2

2

1≤j≤H 1≤k≤O

x[I]

y[o]

Multilayer Perceptron (MLP) 1  hidden layer

Labels

t1

to

t[o]

L = -∑j=1tj log(yj)
O

L      yk         ak         Wjk ,bk          

L      yk         ak         hj         aj        Wij,bj             
1 11

222

2



Training 1-hidden layer MLP
backpropagation

a1j =
I∑
i=1

xiW
1
ij + b1j δW 1

ij = δa1j
δa1j
δW 1

ij

= δa1j xi

hj = f(a1)j δa1j =
∑
j′

δhj′
dfj′

da1j
δhj =

0∑
k=1

δa2kW
2
jk

a2k =
H∑
j=1

hjW
2
jk + b2k δW 2

jk = δa2j
δa2k
δW 2

jk

= δa2k hj

yk = softmax(a2)k δa2k =
∑
k′

δyk′
δyk′

δak
= yk − tk

L = −
O∑
k=1

tk log yk δyj = −
tj
yj



x1

xI

h1

hH

WIH WHO

h[H]

y1

yO

ak = ∑j=1 hj Wjk+ bk
H

aj = ∑i=1 xi Wij + bj 
I

hj = f(a )j

1

11 1

2

222

yk= softmax(ak ) 

x[I]

y[o]

Multilayer Perceptron (MLP) 1  hidden layer

Labels

t1

to

t[o]

L = -∑j=1tj log(yj)

dWij = daj xi  

dak  = yk - tk  

1≤j≤Hdyk = -tk/yk

forward pass backwards pass

O

1≤i≤I

1≤i≤I

dv =: dL/dv

1

2

1≤k≤O

2

dWjk = dak hj  
2

1≤k≤O
1≤j≤H

dhj  = ∑k=1dak Wjk   

daj  = dhjf
’(a )j

1

1

1

1

2

2

2O



backpropagation by hand

Multilayer Perceptron (MLP) 1  hidden layer



PyTorch is all you need for backpropagation
Multilayer Perceptron (MLP) 1  hidden layer

pytorch code



The Cross-Entropy Loss
K-class classification

input x label t ∈ {1, . . . K}
Outputs (logits) y(θ) = (y1, . . . , yK)

covert to categorical probability distributions
q = (t1, . . . , tK), ti = δ(i = t)

p(θ) = softmax(y)

objective: optimize weights θ so that p(θ) ≈ q

minimize KL divergence KL(q||p) =
∑

k qk log
qk
pk



The Cross-Entropy Loss

θ∗ = argminθ
∑
k

qk log
qk

pk(θ)

= argminθ

[∑
k

qk log qk −
∑
k

qk log pk(θ)

]

= argminθ −

[∑
k

qk log pk(θ)

]
The cross-entropy

Minimizing the cross entropy is equivalent to minimizing the KL
divergence



The Cross-Entropy Loss
why entropy?

The **Shannon information content** of an event with probability p
is

log 1
p
= − log p

it quantifies:
“How much information I get by seen this event to happen?”



The Cross-Entropy Loss
The average information content in a probability distribution is called

the entropy of the distribution
H(p) = −

∑
k pk log pk

The maximal information of a categorical distribution, corresponds to
the uniform distribution (pk = 1/K)

H(p) = log(K)

The cross entropy
CE(p||q) = −

∑
k pk log qk

is the amount of uncertainty in one distribution after taking into
account what we know from the other.



Testing the performance of the
model

Increse parameters −→ overfit to training data



Overfitting
Train-set/Test-set leakage

Perceptron

Perceptron

Qian-Sejnowski FIgure 14

Test set = homologous
                 Globin proteins

MLP

MLP

Train set = Globin proteins



Overfitting
Train-set/Test-set NO leakage

Train set = Globin proteins
Test set = non-homologous
                 Globin proteins

MLP

MLP
Perceptron
Perceptron

Qian-Sejnowski FIgure 8





Basics of Neural Networks
Training

Update parameters (backpropagation)

titi

y y

adapted from CSC413 Neural Networks and Deep Learing, U of Toronto

W h(x, W) L(h(x, W),t) R=1/M ∑mLm

Labels lr

logits

forward pass

backwards pass



Basics of Neural Networks
Training

Inference
Input

x

   optimal
parameters

W*

Update parameters (backpropagation)

 Neural
Network

titi

y y

adapted from CSC413 Neural Networks and Deep Learing, U of Toronto

W h(x, W) L(h(x, W),t) R=1/M ∑mLm

Labels lr

logits

h(x, θ*)
        logits
(unnormalized)

y(x, θ*)
  prediction
(normalized)

softmax

forward pass

backwards pass



Inputs Outputs

 Neural
Network

 Neural
Network h(x, θ*)

        logits
(unnormalized)

y(x, θ*)
  prediction
(normalized)

softmax

real inputs
model inputs
(embedding)

AUGC

0100
0010
0001
1000

AUGC





backpropagation/automatic differentiation

a2 = h * W2 + b2

y = f2(a
2)

L = -t log(y)

dW2 = da2 * da2/dW2 = hT  * da2 

da2 = dy * dy/da2  = dy f2
’(a2)

dy = dL/dy        = -t/y

a1 = x * W1 + b1

h = f1(a
1)

dh = da2 * da2/dh  = da2 * (W2)T db2 = da2 * da2/db2 = da2

da1 = dy  * dy/da1  = dy f1
’(a1)

dW1 = da1 * da1/dW1 = xT * da1

db1 = da1 * da1/db1 = da1 

forward pass backward pass

MLP with 1 hidden layer
.

.

.

xT[I,N]*da1[N,H] = ∑nx(n,i)da
1(n,j)=dW1[I,H]

hT[H,N]*da2[N,O] = ∑nh(n,j)da
2(n,k)=dW2[H,O]

da2[N,O]*(W2)T[O,H]= ∑kda
2(n,k)W2(j,k)=dh[N,H]

   

notation:  
dv := dL/dv, 1 <= n <= N (batch  dim)

1 <= i <= I (input  dim)
1 <= j <= H (hidden dim)
1 <= k <= O (output dim)



Fitting the models

I Gradient descent

I Stochastic gradient descent

I Batch and epoch

I Adam (adaptive momentum estimation)



Generalization

Performance on train set −→ Performance on test set?

Loss

0
# of training examples0

Loss

0
# of parameters0

Loss

0
# of epochs0

testset

trainset

under-fit            good-fit 

testset

trainset

under-fit     good-fit      over-fit

testset

trainset

under-fit     good-fit     over-fit



Generalization

I Adding more data

I Reduction of parameters adding a bottleneck layer

I Large weights induce overfitting

I Early stopping

I Regularization of large weights with L2 or L1 norm
I Stochastic regularizations

I Dropout
I Noise injection




