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supervised/unsupervised learning



block b1
Feed Forward Networks
Protein 2D Structure



Feed Forward Networks (FFN)
Multilayer Perceptron (MLP)

Fully Connected Networks (FCN)
Fully Connected Layer (FC)



Feed Forward vs FeedBack Networks

Hopfield Networks are Feedback
memory adquisition/storage/retrieval





From single-neuron perceptron to MLP
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categorical variable = takes a fix number
of values

The state of a single neuron (active/inactive) (apple/orange) is a binary
categorical variable

Can be re-written using a one-hot representation
output/activity one-hot

t = {0, 1} t̄ = [t1, t2]

t = 1 (Apple) t̄(A) = [1, 0]

t = 0 (Orange) t̄(O) = [0, 1]



Easy generalization to more than two
categories

For a categorical variable to distinguish a neuron in one of three states:
Active / Inactive / Refractory

we can use the one-hot encoding
t = [t1, t2, t3]

t(Active) = [1, 0, 0]

t(Inactive) = [0, 1, 0]

t(Refractory) = [0, 0, 1]

One-hot encoding for categorical variables



MLP
1 neuron / many outputs
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MLP
many neurons / many outputs
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MLP
many layers
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  multi-class
classification 

Multi-Layer Perceptron
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MLP: input flattening
Fully Connected Layer

input  output 

weights 
w[I,H], b[H]

x[I] h[H] 

flattening  
softmax



MLP: input flattening



MLP: weights

input  output 

weights 
w[I,H], b[H]

x[I] h[H] 

flattening  



MLP: weights



MLP: output softmax

input  
x[I] 

flattening  
softmax

y[D] p[D] 

p[d] =  
exp(y[d])  

sum.exp(y)  

Fully Connected Layer



MLP: output softmax



Why use a softmax output?
I It is a probability distribution! what gives you more information?

I sc(imax) = 14.475
I p(imax) = 0.95

I Can provide significance intervals

I Naturally works with the cross-entropy loss (next)

I It helps keep scores in range (not too large, not too small)

I It facilitates optimization by gradient descent
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MLP: Loss

input  
x[I] 

flattening  
softmax

y[D] p[D] 

Fully Connected Layer

one-hot label  
t[D] 

loss = -  �d=1 td log(pd)  
D  

cross-entropy loss  



MLP with one hidden layer



Protein 2D structure
The Qian-Sejnowski Model



Protein 2D structure
The ribbon representation
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MLP with one hidden layer
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Training - The loss function
Cross Entropy

Loss = 1
N

∑N
n=1 L

(n)(W 1, b1,W 2, b2).

L(n)(W 1, b1,W 2, b2) = −
∑O

k=1 t
(n)
k log y

(n)
k .

(I will drop the super index for the training example (n) after this)
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Perceptron for multiclass classification
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Training a multiclass perceptron
forward pass
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Training a multiclass perceptron
stochastic gradient descent (SGD)

Wij ←− Wij − α
∂L

∂Wij
1 ≤ i ≤ I
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1 ≤ j ≤ O

W [I, O] b[O]



Training a multiclass perceptron
backpropagation
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Training a multiclass perceptron
backpropagation
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Perceptron for multiclass classification
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Perceptron for multiclass classification
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Training 1-hidden layer MLP
stochastic gradient descent (SGD)
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Training 1-hidden layer MLP
backpropagation
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backpropagation by hand

Multilayer Perceptron (MLP) 1  hidden layer



PyTorch is all you need for backpropagation
Multilayer Perceptron (MLP) 1  hidden layer

pytorch code



The Cross-Entropy Loss
K-class classification

input x label t ∈ {1, . . . K}
Outputs (logits) y(θ) = (y1, . . . , yK)

covert to categorical probability distributions
q = (t1, . . . , tK), ti = δ(i = t)

p(θ) = softmax(y)

objective: optimize weights θ so that p(θ) ≈ q

minimize KL divergence KL(q||p) =
∑

k qk log
qk
pk



The Cross-Entropy Loss

θ∗ = argminθ
∑
k

qk log
qk

pk(θ)

= argminθ

[∑
k

qk log qk −
∑
k

qk log pk(θ)

]

= argminθ −

[∑
k

qk log pk(θ)

]
The cross-entropy

Minimizing the cross entropy is equivalent to minimizing the KL
divergence



The Cross-Entropy Loss
why entropy?

The **Shannon information content** of an event with probability p
is

log 1
p
= − log p

it quantifies:
“How much information I get by seen this event to happen?”



The Cross-Entropy Loss
The average information content in a probability distribution is called

the entropy of the distribution
H(p) = −

∑
k pk log pk

The maximal information of a categorical distribution, corresponds to
the uniform distribution (pk = 1/K)

H(p) = log(K)

The cross entropy
CE(p||q) = −

∑
k pk log qk

is the amount of uncertainty in one distribution after taking into
account what we know from the other.



Testing the performance of the
model

Increse parameters −→ overfit to training data



Overfitting
Train-set/Test-set leakage

Perceptron

Perceptron

Qian-Sejnowski FIgure 14

Test set = homologous
                 Globin proteins

MLP

MLP

Train set = Globin proteins



Overfitting
Train-set/Test-set NO leakage

Train set = Globin proteins
Test set = non-homologous
                 Globin proteins

MLP

MLP
Perceptron
Perceptron

Qian-Sejnowski FIgure 8





Basics of Neural Networks
Training

Update parameters (backpropagation)

titi

y y

adapted from CSC413 Neural Networks and Deep Learing, U of Toronto

W h(x, W) L(h(x, W),t) R=1/M ∑mLm

Labels lr

logits

forward pass

backwards pass



Basics of Neural Networks
Training

Inference
Input

x

   optimal
parameters

W*

Update parameters (backpropagation)

 Neural
Network

titi

y y

adapted from CSC413 Neural Networks and Deep Learing, U of Toronto

W h(x, W) L(h(x, W),t) R=1/M ∑mLm

Labels lr

logits

h(x, θ*)
        logits
(unnormalized)

y(x, θ*)
  prediction
(normalized)

softmax

forward pass

backwards pass



Inputs Outputs

 Neural
Network

 Neural
Network h(x, θ*)

        logits
(unnormalized)

y(x, θ*)
  prediction
(normalized)

softmax

real inputs
model inputs
(embedding)
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backpropagation/automatic differentiation

a2 = h * W2 + b2

y = f2(a
2)

L = -t log(y)

dW2 = da2 * da2/dW2 = hT  * da2 

da2 = dy * dy/da2  = dy f2
’(a2)

dy = dL/dy        = -t/y

a1 = x * W1 + b1

h = f1(a
1)

dh = da2 * da2/dh  = da2 * (W2)T db2 = da2 * da2/db2 = da2

da1 = dy  * dy/da1  = dy f1
’(a1)

dW1 = da1 * da1/dW1 = xT * da1

db1 = da1 * da1/db1 = da1 

forward pass backward pass

MLP with 1 hidden layer
.

.

.

xT[I,N]*da1[N,H] = ∑nx(n,i)da
1(n,j)=dW1[I,H]

hT[H,N]*da2[N,O] = ∑nh(n,j)da
2(n,k)=dW2[H,O]

da2[N,O]*(W2)T[O,H]= ∑kda
2(n,k)W2(j,k)=dh[N,H]

   

notation:  
dv := dL/dv, 1 <= n <= N (batch  dim)

1 <= i <= I (input  dim)
1 <= j <= H (hidden dim)
1 <= k <= O (output dim)



Fitting the models

I Gradient descent

I Stochastic gradient descent

I Batch and epoch

I Adam (adaptive momentum estimation)



Generalization

Performance on train set −→ Performance on test set?

Loss

0
# of training examples0

Loss

0
# of parameters0

Loss

0
# of epochs0

testset

trainset

under-fit            good-fit 

testset

trainset

under-fit     good-fit      over-fit

testset

trainset

under-fit     good-fit     over-fit



Generalization

I Adding more data

I Reduction of parameters adding a bottleneck layer

I Large weights induce overfitting

I Early stopping

I Regularization of large weights with L2 or L1 norm
I Stochastic regularizations

I Dropout
I Noise injection




