
Sequence modeling and design from molecular to genome scale
with Evo

Eric Nguyen1,2,†, Michael Poli3,4,†,‡, Matthew G. Durrant1,†, Brian Kang1,2,†, Dhruva
Katrekar1,†, David B. Li1,2,†, Liam J. Bartie1, Armin W. Thomas5, Samuel H. King1,2, Garyk
Brixi1,6, Jeremy Sullivan1, Madelena Y. Ng7, Ashley Lewis8, Aaron Lou3, Stefano Ermon3,9,
Stephen A. Baccus10, Tina Hernandez-Boussard8, Christopher Ré3, Patrick D. Hsu1,11,*,
Brian L. Hie1,5,12,*

1Arc Institute, Palo Alto, CA, USA.

2Department of Bioengineering, Stanford University, Stanford, CA, USA.

3Department of Computer Science, Stanford University, Stanford, CA, USA.

4TogetherAI, San Francisco, CA, USA.

5Stanford Data Science, Stanford University, Stanford, CA, USA.

6Department of Genetics, Stanford University, Stanford, CA, USA.

7Stanford Center for Biomedical Informatics Research, Stanford, CA, USA.

8Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.

9CZ Biohub, San Francisco, CA, USA.

10Department of Neurobiology, Stanford University, Stanford, CA, USA.

11Department of Bioengineering and Center for Computational Biology, University of California,
Berkeley, Berkeley, CA, USA.

12Department of Chemical Engineering, Stanford University, Stanford, CA, USA.

Abstract

License information: No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-
reuse
*Corresponding author. brianhie@stanford.edu (B.L.H.); patrick@arcinstitute.org (P.D.H.).
†These authors contributed equally to this work.
‡Present address: Liquid AI, Cambridge, MA, USA.
Author contributions: E.N., P.D.H., and B.L.H. conceived the project. P.D.H. and B.L.H. supervised the project. E.N., M.P., and
A.W.T. designed the model architecture. M.G.D. and B.L.H. curated and processed the pretraining and fine-tuning datasets. M.P.
implemented the optimized training and generation code. E.N., A.W.T., G.B., and B.L.H. contributed to the optimized training and
generation code. J.S. set up and managed the hardware infrastructure and training environment. E.N., M.P., and A.W.T. implemented
and carried out the scaling laws analysis. B.L.H. evaluated pretrained and fine-tuned models on molecular prediction tasks. E.N.,
B.K., and B.L.H. conducted model fine-tuning. B.K. and P.D.H. sampled or analyzed CRISPR-Cas generations. B.K., D.K., and L.J.B.
experimentally tested the CRISPR-Cas generations. M.G.D., D.B.L., and B.L.H. sampled or analyzed the IS200/IS605 generations.
D.B.L. experimentally tested the IS200/IS605 generations. B.L.H. conducted the gene essentiality analysis. M.P., S.H.K., and B.L.H.
conducted genome-scale sampling and analysis. M.P., A.W.T., and B.L.H. implemented the public Evo codebase. M.Y.N., A.Le., and
T.H.-B. conducted the ethics and safety investigation and discussion. E.N., M.P., M.G.D., P.D.H., and B.L.H. wrote the first draft of
the manuscript. All authors wrote the final draft of the manuscript.

Competing interests: All other authors declare no competing interests.

HHS Public Access
Author manuscript
Science. Author manuscript; available in PMC 2025 May 15.

Published in final edited form as:
Science. 2024 November 15; 386(6723): eado9336. doi:10.1126/science.ado9336.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.science.org/about/science-licenses-journal-article-reuse
https://www.science.org/about/science-licenses-journal-article-reuse

INTRODUCTION: The fundamental instructions of life are encoded in the DNA sequences of

all living organisms. Understanding these instructions could unlock deeper insights into biological

processes and enable new ways to reprogram biology into useful technologies. However, even the

simplest microbial genomes are incredibly complex, with millions of DNA base pairs encoding

the interplay of DNA, RNA, and proteins—the three modalities of the so-called central dogma

of molecular biology and the key actors in cellular function. This complexity exists at multiple

scales, from individual molecules to whole genomes, representing a vast landscape of genetic

information that has been functionally selected over evolutionary time.

RATIONALE: Rapid progress in artificial intelligence (AI) has led to large language models that

demonstrate increasingly advanced multitask reasoning and generation capabilities when trained

on massive amounts of data. However, technological limitations in the architecture of these models

have restricted efforts to apply them to biology at a similar scale. Current approaches struggle

to analyze sequences at the individual character level and are computationally demanding when

applied to long sequences. An advanced model maintaining single-nucleotide resolution over large

genomic sequences could potentially extract functional information about the complex molecular

interactions that are embedded in the patterns of natural evolutionary variation.

RESULTS: In this work, we present Evo, a genomic foundation model that enables prediction

and generation tasks from the molecular to the genome scale. Using an architecture based on

advances in deep signal processing, we scaled Evo to 7 billion parameters with a context length

of 131 kilobases at single-nucleotide resolution. We report scaling laws on DNA, complementing

similar observations in natural language and vision. Trained on 2.7 million prokaryotic and

phage genomes, Evo demonstrates zero-shot function prediction across DNA, RNA, and protein

modalities that is competitive with—or outperforms—domain-specific language models. Evo

also excels at multimodal generation tasks, which we demonstrated by generating synthetic

CRISPR-Cas molecular complexes and transposable systems. We experimentally validated the

functional activity of Evo-generated CRISPR-Cas molecular complexes as well as IS200 and

IS605 transposable systems, representing the first examples of protein-RNA and protein-DNA

codesign with a language model. Using information learned over whole genomes, Evo learns

how small changes in nucleotide sequence affect whole-organism fitness and can generate DNA

sequences with plausible genomic architecture more than 1 megabase in length.

CONCLUSION: Evo is a foundation model that is designed to capture two fundamental aspects

of biology: the multimodality of the central dogma and the multiscale nature of evolution. The

central dogma integrates DNA, RNA, and proteins with a unified code and predictable information

flow, whereas evolution unifies the vastly different length scales of biological function represented

by molecules, pathways, cells, and organisms. Evo learns both of these representations from the

whole-genome sequences of millions of organisms to enable prediction and design tasks from

the molecular to genome scale. Further development of large-scale biological sequence models

like Evo, combined with advances in DNA synthesis and genome engineering, will accelerate our

ability to engineer life.

Abstract

The genome is a sequence that encodes the DNA, RNA, and proteins that orchestrate an

organism’s function. We present Evo, a long-context genomic foundation model with a frontier

architecture trained on millions of prokaryotic and phage genomes, and report scaling laws on

Nguyen et al. Page 2

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

DNA to complement observations in language and vision. Evo generalizes across DNA, RNA,

and proteins, enabling zero-shot function prediction competitive with domain-specific language

models and the generation of functional CRISPR-Cas and transposon systems, representing the

first examples of protein-RNA and protein-DNA codesign with a language model. Evo also learns

how small mutations affect whole-organism fitness and generates megabase-scale sequences with

plausible genomic architecture. These prediction and generation capabilities span molecular to

genomic scales of complexity, advancing our understanding and control of biology.

Graphical Abstract

Evo, a 7-billion-parameter genomic foundation model, learns biological complexity from
individual nucleotides to whole genomes. Trained on 2.7 million raw prokaryotic and phage

genome sequences, Evo is naturally multimodal, enabling the codesign of DNA, RNA, and protein

molecules that form higher-order functional systems. Evo is also inherently multiscale, enabling

prediction and generation tasks at the level of molecules, systems, and genomes.

DNA is the fundamental layer of biological information that is responsible for transmitting

the results of evolution across generations of life (1–3). Evolutionary variation in genome

sequences reflects adaptation and selection for biological function at the phenotypic level

(4). Rapid advances in DNA sequencing technologies have enabled the systematic mapping

of this evolutionary diversity at the whole-genome scale.

A machine that learns this breadth of information across genomes could model the function

of DNA, RNA, and proteins as well as their diverse interactions that orchestrate complex

biological functions, mediate disease, or create a complete organism. Modern machine

Nguyen et al. Page 3

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

learning algorithms combined with massive datasets of genomic sequences could enable a

general biological foundation model that learns the intrinsic logic of whole genomes.

However, current efforts to model molecular biology with machine learning have been

Focused on creating modality-specific models that are specialized to proteins, coding

sequences, RNA, or regulatory DNA (5–9). In addition, generative applications in biology

have been limited to the design of single molecules, simple complexes (10–12), or

short DNA sequences (13, 14). By contrast, complex biological processes, such as gene

regulation, CRISPR immunity, or genetic transposition, rely on many interactions involving

molecules across multiple modalities.

A DNA model that unifies information across the molecular, systems, and genome scales

could learn from large genomic regions to capture systems-wide interactions and enable

the design of more-sophisticated biological functions. By operating at single-nucleotide

resolution, this model would be able to incorporate the evolutionary effects of sequence

variation, such as individual single-nucleotide mutations, that can completely alter organism

function.

Inspired by the recent success of large language models, many approaches have applied

similar modeling techniques to biological sequences. However, existing attempts to model

DNA as a language (15–17) are limited by the prevailing dense Transformer architecture,

which incurs high computational cost as input sequence lengths grow relative to model

width (scaling quadratically) and generally underperforms at single-nucleotide or byte-level

resolution compared with models trained at coarser resolutions (18). Recent algorithmic

advances in extending context length of attention-based models (19, 20) have similar

resolution limitations. As a result, Transformer-based DNA models are constrained to short

context lengths and use schemes that aggregate nucleotides into the basic units of language

models, called tokens, thereby sacrificing single-nucleotide resolution (15, 16, 21–23).

We present Evo, a 7-billion-parameter genomic foundation model trained to generate DNA

sequences at whole-genome scale. Evo uses a context length of 131,072 tokens and is

based on the StripedHyena architecture (24), which hybridizes attention and data-controlled

convolutional operators to efficiently process and recall patterns in long sequences. Evo is

trained on a prokaryotic whole-genome dataset consisting of 300 billion nucleotides and

uses a byte-level, single-nucleotide tokenizer. By conducting a scaling laws analysis for

DNA pretraining, we observe predictable performance gain with larger scale.

We demonstrate that Evo can be used in both prediction and generation tasks at the

molecular, systems, and genome scale. In zero-shot evaluations, Evo is competitive with

protein language models at predicting the fitness effects of mutations on bacterial proteins,

outperforms RNA language models in predicting fitness effects of mutations on noncoding

RNAs (ncRNAs), and predicts how regulatory DNA sequence composition controls gene

expression. Evo also learns the coevolutionary linkage of coding and noncoding sequences

to design functional biological systems including CRISPR-Cas ribonucleoprotein complexes

and transposable elements, requiring codesign of protein-RNA and protein-DNA systems,

respectively.

Nguyen et al. Page 4

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

At the whole-genome scale, Evo understands how small mutations in genomes affect

organismal fitness, indicating its ability to learn aspects of gene function within a broader

genomic context. We also use Evo to generate genome-scale sequences with plausible high-

level architecture more than1 megabase (Mb) in length, a scale that is orders of magnitude

greater than previous methods (10, 13, 14). Taken together, Evo establishes a foundational

paradigm for predictive and generative biological modeling (Fig. 1A) that could enable a

deeper understanding of biology and accelerate our ability to engineer life.

Modeling long sequences at nucleotide resolution with the StripedHyena

architecture

Evo is a genomic foundation model with 7 billion parameters trained with a context length

of up to 131,072 tokens, using single-nucleotide, byte-level tokenization. To model long

sequences at nucleotide resolution efficiently, we leveraged the StripedHyena architecture

(24) (Fig. 1B) that builds on emerging techniques in deep signal processing (25–28). The

model is a hybrid of 29 layers of data-controlled convolutional operators (hyena layers)

interleaved with three layers (10%) of multihead attention equipped with rotary position

embeddings (RoPEs) (29) (table S1 and Materials and methods).

Hyena layers process sequences in an input-dependent manner using compositions of short

and long convolution filters (Fig. 1B), making the layer especially effective at filtering

noisy patterns that can occur in DNA and at aggregating individual nucleotides into motifs.

Model hybridization, first proposed to address shortcomings of state-space models (30–32),

has recently been shown to improve scaling performance on language modeling of both

standalone Hyena and Transformer architectures (24). Compared with HyenaDNA (33), a

previous generation of DNA models leveraging a Hyena architecture (34), Evo is based on

an improved hybrid design and scaled to 1000× larger model size and 100× more data.

Training Evo at scale on OpenGenome

We compiled a large genome dataset called OpenGenome (Materials and methods) with

more than 80,000 bacterial and archaeal genomes and millions of predicted phage and

plasmid sequences, covering 300 billion nucleotide tokens (Fig. 1, C to E; fig. S1; and table

S2) (35–37). For safety considerations, we excluded viral genomes that infect eukaryotic

hosts. Like most language models, Evo is pretrained using a next-token prediction objective

on raw genome sequences with no explicit supervision or annotations. Pretraining involved a

first stage usinga context length of 8192 tokens and a second context-extension stage using a

context length of 131,072 tokens.

StripedHyena demonstrates favorable scaling laws on DNA sequence data

Aiding our model design, we performed a scaling laws analysis for DNA sequence modeling

to determine the relationship between training, architectural details, and performance

metrics through a systematic experimental protocol (38, 39). Once a set of scaling laws

is obtained, it can then be used as a guide to optimally scale training to larger models and

datasets.

Nguyen et al. Page 5

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We compare different classes of architectures using a compute-optimal protocol, aimed at

evaluating results on the compute-optimal frontier (Materials and methods). We trained

more than 300 models across four architectures: Transformer++, Mamba, Hyena, and

StripedHyena (table S3). Transformer++ is a state-of-the-art Transformer, and Mamba is

a modern architecture using data-controlled state-space models (40).

We found Transformer++ to yield substantially worse perplexity (a measure of next

token prediction quality) at all compute budgets (Fig. 1, F and G), a symptom of the

inefficiency of the architecture at the byte resolution. Both state-space and deep signal

processing architectures had an improved scaling rate over Transformer++, with Hyena and

StripedHyena resulting in the best scaling rate. We observed stable training for StripedHyena

throughout all the studied model sizes and learning rates during the scaling analysis.

We also compare architecture performance outside the compute-optimal frontier, namely

with allocations of the computational budget that may be suboptimal. Performance outside

the compute-optimal frontier is important in practice, as most models (including Evo) are

trained for more tokens than recommended by compute-optimal scaling laws. We estimate

250 billion to be the compute-optimal number of tokens for Evo 7B given the floating

point operation (FLOP) budget, meaning the model was trained at a 17% offset from

the compute-optimal model size during the initial 8192 sequence length pretraining phase

of 300 billion tokens. Both Transformer++ and Mamba experienced numerical instability

during training and suffered from a higher performance degradation of the scaling rate

outside the compute-optimal frontier, in contrast to StripedHyena (figs. S3 to S7). These

findings motivate the choice of StripedHyena as the architecture for Evo.

Evo learns across DNA, RNA, and protein modalities

Predicting mutational effects on protein function

Beyond evaluating perplexity, we next investigated the model’s zero-shot performance on

biologically relevant downstream tasks. For example, language models specifically trained

on large corpuses of protein sequences or nucleotide coding sequences have demonstrated

an ability to predict mutational effects on protein function (41–43) without any task-specific

fine-tuning or supervision. Because Evo’s training data contains protein coding sequences,

we tested whether the model could also perform zero-shot protein function prediction.

Notably, Evo is trained on genomic sequences without any explicit coding sequence

annotations.

Following work in evaluation of protein language models, we leveraged deep mutational

scanning (DMS) studies, which introduce an exhaustive set of mutations to a protein coding

sequence and then experimentally measure the effects of these mutations on various fitness

metrics, which quantify functional activity (42, 44, 45). The language-model likelihood or

pseudolikelihood (Materials and methods) of the amino acid sequence is used to predict the

experimental fitness score (Fig. 2A). To adapt this task to nucleotide sequences, we use the

wild-type coding sequence and nucleotide mutations reported in the original DMS studies

(Materials and methods).

Nguyen et al. Page 6

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

On DMS datasets of prokaryotic proteins, Evo’s zero-shot performance exceeded all

other nucleotide models tested (Fig. 2B and table S4), including GenSLM (15)—a model

explicitly trained only on coding sequences with a codon vocabulary (Fig. 1A). Evo also

reaches competitive performance with leading protein-specific language models (41, 46–48)

(Fig. 2B). Previous work has shown that improvement beyond this performance range is

difficult for protein language models with self-supervised pretraining alone (49), indicating

that Evo is already competitive with state-of-the-art protein language modeling on bacterial

proteins. On DMS datasets of human proteins, Evo is unable to predict mutational effects on

fitness (fig. S8A and table S5), most likely because the pretraining dataset is composed of

prokaryotic sequences. However, we observed a strong association between language-model

perplexity on the wild-type sequence and fitness prediction performance (fig. S8B), which

indicates that additional fine-tuning or future pretraining on mammalian coding sequences

could improve Evo’s performance beyond bacterial proteins.

Predicting mutational effects on ncRNA function

Next, we tested whether the same pretrained model could learn functional information about

ncRNAs, such as tRNAs, ribosomal RNAs (rRNAs), and ribozymes. We collected ncRNA

DMS datasets (Materials and methods) and evaluated Evo’s ability to perform zero-shot

ncRNA fitness prediction using the results of experimental ncRNA DMS studies as the

ground truth score (Fig. 2C).

We found that Evo again outperforms all other tested nucleotide language models at this

task, including RNA-FM (50), an RNA language model that is explicitly trained on ncRNA

sequences (Fig. 2D and table S6). We observed especially strong predictive performance

on a study that measured the effects of mutations to the 5S rRNA on the growth rate

of Escherichia coli (Spearman correlation coefficient r = 0.60, two-sided t-distributed P =

1.9 × 10−3) (51). Beyond protein sequences, these results demonstrate that Evo can learn

mutational effects on ncRNA function.

Predicting activity of regulatory DNA

Given that Evo’s training also contains prokaryotic regulatory DNA sequences, we

investigated whether Evo has learned information that is useful for regulatory DNA tasks.

We focused on predicting gene expression from promoter sequences and protein expression

from sequences of ribosome-binding sites (RBSs) (Fig. 2E).

For supervised promoter activity prediction, we followed a previous study (52) in which a

regression model is developed using train and validation splits from a single study, and the

final model is then tested on promoter datasets from other studies to assess out-of-domain

generalizability (Materials and methods). We used the three test datasets from LaFleur et al.
(52–55) and a dataset in which Kosuri et al. constructed ~12,000 combinations of common

promoters and RBSs and measured the corresponding mRNA expression of a reporter gene

for each promoter-RBS pair in E. coli (56).

Evo’s zero-shot likelihoods had non-negligible correlation with promoter activity across

these four studies (mean Spearman r = 0.43). These correlations also exceed those of

the sequence guanine-cytosine (GC) content (mean Spearman r = 0.35) and the zero-

Nguyen et al. Page 7

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

shot likelihoods of GenSLM (mean Spearman r = 0.09) (Fig. 2F and table S7). We

also trained two supervised models, a ridge regression linear model and a convolutional

neural network (CNN), on either Evo embeddings or one-hot-encoded sequence. The CNN

architecture substantially outperformed ridge regression across both embeddings, and the

Evo embeddings substantially outperformed one-hot embeddings across both architectures

(Fig. 2F and table S7). Notably, even zero-shot Evo likelihoods had comparable predictive

performance (mean Spearman r = 0.43) to a CNN trained on one-hot embeddings (mean

Spearman r = 0.44), which indicates that Evo’s pretraining contributes useful information

to function prediction. Combining the Evo embeddings with a supervised CNN architecture

(mean Spearman r = 0.56) also approached the performance of Promoter Calculator (52),

a state-of-the-art method for promoter activity prediction (mean Spearman r = 0.62). These

results indicate that Evo has learned sequence-intrinsic information that is a useful correlate

of promoter activity and motivates improving zero-shot learning within the foundation

model to improve downstream performance in specific, supervised tasks.

For protein expression prediction, we used the dataset collected by Kosuri et al. (56), which

contains RBSs in addition to promoters and which also measured protein expression in

addition to mRNA expression. Evo’s zero-shot likelihoods of the RBS sequence alone had

weak correlation with protein expression (Spearman r = 0.17). However, when concatenating

the promoter and RBS sequence together, Evo’s zero-shot likelihoods improved substantially

(Spearman r = 0.61); this correlation is also higher than the zero-shot correlation of

just the promoter sequence alone (Spearman r = 0.47), which indicates that additional

regulatory sequence could provide useful functional context. Evo’s zero-shot correlation

on promoter-RBS sequences is also higher than the GC content of the promoter-RBS

sequences (Spearman r = 0.47), zero-shot GenSLM likelihoods (Spearman r = 0.11), and

RBS Calculator (Spearman r = 0.39)—a state-of-the-art protein expression predictor (Fig.

2G) (57, 58).

Overall, we show how a single model can perform well on tasks that have previously

been accomplished by different, domain-specific models. Despite being trained on long

genomic sequences without explicit annotations, Evo demonstrates a robust and general

understanding of the constitutive protein coding sequences, ncRNA sequences, and

regulatory elements.

Generative design of CRISPR-Cas molecular complexes

Next, we reasoned that Evo should be able to generate functional complexes that involve

interactions between distinct molecular modalities. In prokaryotes, functionally related

genes are generally organized into operons and located next to each other on the genome

sequence. Because Evo learns covariation patterns involving any genetic elements within

its context window, the model should understand interactions between encoded protein

and ncRNA molecules. To demonstrate this capability, we fine-tuned Evo on a dataset

of genomic loci containing CRISPR-Cas sequences—molecular machines that consist of

protein and ncRNA components that, together, direct adaptive immunity against viral

infection (59).

Nguyen et al. Page 8

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The DNA-targeting Cas9 nuclease is typically encoded within 3000 to 4800 base pairs (bp)

of coding sequence and found in close genomic proximity to its cognate CRISPR array

(60). Transcription from the CRISPR array generates noncoding CRISPR RNA (crRNA)

molecules that are bound by the Cas protein to generate a functional defense complex

that is required for sequence-specific DNA targeting (Fig. 3A). For Cas9 in particular, a

second trans-activating CRISPR RNA (tracrRNA) forms a duplex with the crRNA to create

a full guide RNA (gRNA). Diverse families of CRISPR-Cas systems are found throughout

bacterial and archaeal life, such as Cas12- or Cas13-based systems that target DNA and

RNA, respectively (61).

We fine-tuned Evo on 72,831 CRISPR-Cas loci extracted from public metagenomic and

genomic sequences, adding special prompt tokens for Cas9, Cas12, and Cas13 that were

prepended to the beginning of each training sequence (Fig. 3B). During sampling, these

tokens allow us to guide generation of a specific CRISPR-Cas system type by prompting

with the corresponding special token. Sampling 8-kb sequences using each of the three

Cas token prompts resulted in coherent generations containing Cas coding sequences and

CRISPR arrays corresponding to the expected subtype (Fig. 3C and Materials and methods).

Evo generations were classified as Cas9, Cas12, or Cas13 sequences if they contained a

CRISPR array detected with the MinCED package and an open reading frame (ORF) that

returns a positive hit using a Cas9, Cas12, or Cas13 profile hidden Markov model (pHMM),

with a significance threshold of an E value < 1 × 10−3. Sequence alignment with the training

dataset revealed that some of the predicted ORFs that returned a positive hit using a Cas9

pHMM also exhibited <40% protein sequence identity to the closest natural Cas9 (Fig. 3D).

We also found that the Evo model fine-tuned on CRISPR-Cas loci produces higher quality

and more diverse generations across all Cas subtypes compared with a model trained solely

on CRISPR-Cas sequences (Fig. 3D and Materials and methods).

Next, we filtered ~2 million Evo-generated sequences for Cas9 loci that contained a Cas9

ORF with RuvC and HNH domains, a CRISPR repeat array, and a detectable tracrRNA

sequence (fig. S9), selecting 11 Cas9 systems with robust predicted local distance difference

test (pLDDT) scores for functional validation. These samples contain conserved CRISPR-

associated genes such as Cas1 and Cas2 involved in CRISPR adaptation, and the positional

entropies from the fine-tuned Evo model delimit the boundaries of the protein-coding genes

within the locus as well as the noncoding CRISPR repeat motifs (Fig. 3E).

We evaluated the 11 Cas9 generations using an initial in vitro transcription-translation assay

followed by the introduction of a DNA target containing an NGG protospacer adjacent

motif (PAM) sequence (fig. S14). One of the generations exhibited robust activity, which

we named EvoCas9–1. Recombinant expression and purification of EvoCas9–1 paired with

chemically synthesized Evo-generated single guide RNA (sgRNA) exhibited comparable in

vitro cleavage activity to SpCas9 paired with the canonical SpCas9 sgRNA (Fig. 3F) (62,

63). We further observed that the Evo-generated sgRNA also improved cleavage efficiency

of SpCas9 when compared with a canonical SpCas9 sgRNA (fig. S15 and Materials and

methods).

Nguyen et al. Page 9

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The EvoCas9–1 amino acid sequence shares 79.9% identity with the closest Cas9 in the

database of Cas proteins used for model fine-tuning and 73.1% identity with SpCas9. Evo-

designed sgRNA is 91.1% identical to the canonical SpCas9 sgRNA and exhibits secondary

structure differences in the two terminal stem loops, notably extending the length of stem

loops 2 and 3 (Fig. 3G). Although the predicted backbone structure of EvoCas9–1 resembles

that of SpCas9, the predicted structure of EvoCas9–1 exhibits a more positive surface charge

distribution (Fig. 3H and fig. S16B). The isolated sgRNA structures from the SpCas9 crystal

structure and the structure of the EvoCas9–1 sgRNA predicted by the AlphaFold3 model

(64) show strong agreement in RNA secondary structure (Fig. 3I). The AlphaFold3 cofolded

structure prediction for EvoCas9–1 has a high mean pLDDT score of 90 across its protein,

RNA, and DNA components (Fig. 3J).

EvoCas9–1 was generated from just 11 code-signs, representing a robust success rate

given the complexity of Cas9’s multistep mechanism (fig. S14), which requires intricate

coordination of protein domains and nucleic acid interactions. Furthermore, the diverse

generations were tested on a single NGG PAM, and this sequence preference is known to

vary across Cas9 orthologs.

Designing new Cas systems currently relies on mining sequence databases for homologous

proteins, where natural evolution provides functional diversity. By leveraging Evo’s inherent

multimodal capabilities, we can codesign protein-RNA complexes with a single language

model, providing a design methodology that can be harnessed across the broad diversity

of CRISPR systems and expanding the repertoire of CRISPR technologies beyond what is

found in nature.

Generative design of transposon systems

In addition to molecular complexes, Evo learns patterns underlying multigene systems.

Mobile genetic elements (MGEs) are biological systems that often contain multiple genes

and are found throughout all domains of life. Their opportunistic spread drives sequence

variation, new gene function, and even speciation (65). The IS200/IS605 family of MGEs

spreads through “peel-and-paste” transposition catalyzed by the homodimeric transposase

TnpA interacting with terminal hairpins at the left end (LE) and right end (RE) of the

element. The insertion sequence (IS) is excised from single-stranded DNA (ssDNA) as a

circular product containing an RE-LE junction, which serves as an intermediate for insertion

into a new ssDNA target site. IS605 elements additionally contain an RNA-guided TnpB

nuclease and a cognate ωRNA that bias the selfish inheritance of the transposable element

(Fig. 4A) (66–69). The ability to generate new MGEs could improve our understanding of

their biological function and enable the design of more effective genome engineering tools.

We fine-tuned Evo on 10,720 IS605 elements and 219,866 IS200 elements in their natural

sequence context (Fig. 4B and Materials and methods). We next calculated the entropy of

the conditional probabilities at each position across natural IS200/IS605 loci (fig. S18) and

observed a sharp and sustained increase in entropy corresponding with the 3′ end of the

element in particular, indicating that Evo learned a representation of the MGE boundaries.

Beyond first-order positional statistics, we also observed that the model learns pairwise

Nguyen et al. Page 10

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

relationships between positions in the sequence using a “categorical Jacobian” analysis (70),

in which we vary the value of each position in the input sequence and measure the resulting

changes in the model outputs at all positions. We observed that the model uses information

from one end to specify the other end across a distance of ~1 to 2 kb, reflecting the model’s

understanding of the tight evolutionary linkage of the two terminal elements (fig. S19).

Using special prompt tokens, we used the fine-tuned model to generate IS200 or IS605

elements (fig. S18A). TnpA and TnpB proteins that were detected within these generated

sequences varied widely in their distance from the nearest examples in the training set (Fig.

4C), with consistently high ESMFold pLDDT values for predicted structures that were >40

to 50% identity to the training set (fig. S18B) and a sequence length distribution that closely

matched proteins in the training set (fig. S18C).

To select sequences for experimental validation, we filtered by similarity to natural systems

(ISSpn6, ISStin10, ISHp608, and ISDge10) as well as TnpA protein–level and DNA

sequence–level features (fig. S20) and experimentally tested 24 IS200-like and 24 IS605-

like designs in vitro. We assay for TnpA-mediated excision and insertion by incubating

TnpA protein produced through in vitro transcription-translation with a ssDNA substrate

containing the putative left and right ends, followed by a polymerase chain reaction (PCR)

with outward-facing primers. If excision occurs, a band is produced from the formation of

the RE-LE junction. If the donor contains other target sites and insertion also occurs, bands

are produced from the joining of the two ssDNA substrates by the same PCR reaction (Fig.

4D).

We observed that 11 out of 24 Evo-generated IS200-like elements and 3 out of 24 Evo-

generated IS605-like elements demonstrated evidence for both excision and insertion in

vitro (Fig. 4E to J, and fig. S21). This activity was also dependent on the presence of a

putative catalytic tyrosine and on having a ssDNA substrate instead of double-stranded DNA

(dsDNA), consistent with the known mechanism for IS200/IS605 TnpA (Fig. 4, F and I).

To identify the precise boundaries of each element, we performed nanopore sequencing

of the PCR products (Fig. 4, G and J, and figs. S22 and S23). As a control, we tested

the natural IS200 element ISSpn6 and IS605 element ISHp608, and in both cases, we

successfully detected the ISFinder-annotated boundaries (71), additionally revealing that the

ISSpn6 TnpA can also mobilize using additional left and right ends within the locus (fig.

S24). Three of our generated elements also appeared to mobilize using more than one left or

right end pair (figs. S23, S25, and S26). The functional IS605-like elements, which contain

putative TnpB coding sequences, also contain sequences with significant matches (cmsearch

E value < 0.001) to a covariance model constructed from known ωRNAs (Fig. 4E and fig.

S26). As a whole, the 14 active elements use a diverse set of hairpins (Fig. 4, E and H, and

figs. S25 and S26) and encode functional TnpA proteins with sequence identity as low as

67% to the fine-tuning database.

These generative results are notable given that successful transposition requires TnpA

proteins that functionally dimerize, TnpA dimer interactions with DNA hairpins in the

LE and RE, base pairing between the LE and RE hairpins and the target site, and

strand cleavage and exchange. Despite the complexity of this mechanism, we observed

Nguyen et al. Page 11

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a high design success rate, nearing 50% for the IS200-like systems. Generative design

and diversification of this functional class of MGEs could explore regimes of high

activity unconstrained by natural evolutionary pressure on transposon fitness, expanding

our understanding of transposase protein requirements and enabling biotechnological

applications.

Learning gene essentiality with long genomic context

Beyond the molecular or systems level, we designed Evo to be capable of analyzing whole

genomes. We conducted a second stage of pretraining in which Evo processed sequences

with 131,072-token context (Fig. 5A) that also contained species-specific tokens. This stage

used data from the genome taxonomy database (GTDB) and a subset of IMG/VR that

excludes eukaryotic viruses (Fig. 1C, fig. S1, and Materials and methods). Evo maintains

single-nucleotide resolution at its 131,072 context length, which is important because even

a single-nucleotide mutation in an essential gene can be incompatible with life if it disrupts

that gene’s expression or function (72).

To this end, we evaluated whether Evo would be sensitive to mutations in essential genes

solely based on small changes in a long genomic sequence. We conducted an experiment

in which we inserted premature stop codons at the beginning of each coding sequence in

a given organism’s genome and measured the effects of these changes on Evo’s likelihood

with respect to the likelihood of the wild-type sequence (Fig. 5B). When computing the

changes to the mutant versus wild-type sequences, we evaluated Evo on the gene sequence

alone (“gene-only context”) or the gene sequence with lanking context up to a total of

8192 tokens (“8k context”) or 66,000 tokens (“66k context”) (Materials and methods). We

hypothesized that mutations to essential genes would result in larger, more negative changes

in log-likelihood compared with mutations to nonessential genes.

On a dataset of 56 whole-genome essentiality studies in bacteria from the DEG database

(73) and two whole-genome essentiality studies in phage from Piya et al. (74), we

observed that the changes in Evo log-likelihood with 66k context are significantly associated

(Bonferroni-corrected permutation-based P < 0.05) with gene essentiality in 49 of 58

genomes. We also observed that providing the model with additional genomic context

beyond the gene sequence results in a substantial improvement in performance, especially

from gene-only context to 8k context. From 8k to 66k context, the average predictive

performance is comparable, although performance on the lower range of examples does

improve with longer context (Fig. 5C and fig. S27, A and B). For a few genomes, the

zero-shot performance with 66k context is notably strong, with an AUROC of 0.90 on

lambda phage essentiality data (74) and an AUROC of 0.84 on Pseudomonas aeruginosa
essentiality data (75) (Fig. 5D).

Evo likelihood changes are also indicative of gene essentiality when using different in silico

mutagenesis strategies, such as varying the number of stop codons inserted or deleting the

gene sequence entirely (fig. S27C and Materials and methods), though we did not attempt an

exhaustive search of the best prompting strategy for this task. GenSLM, a codon language

Nguyen et al. Page 12

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

model that had mild predictive performance of mutational effects on single-gene protein

function (Fig. 2B), did not demonstrate sensitivity to gene essentiality (Fig. 5C).

As control analyses, we examined genome position and sequence conservation. A gene’s

position in the genome showed no link to essentiality (Fig. 5C). We observed that more

conserved sequences tended to be essential, with an association strength similar to that of

Evo with gene-only context but weaker than that of Evo with genomic sequence context

(Fig. 5C).

These results highlight the added value of Evo’s ability to consider genomic context when

predicting gene essentiality. Together, these results demonstrate that Evo can learn how

small mutations affect fitness at a whole-organism level across many bacterial and phage

species, without any explicit genome annotations, task-specific training data, or functional

labels. In contrast to protein or codon language models, Evo can learn how individual genes

interact with a broader genomic context.

Generating DNA sequences at genome scale

Given Evo’s generative capabilities, we were interested in testing its generation quality at

long sequence lengths without additional fine-tuning. We used Evo to sample 16 sequences

each containing ~1 Mb, representing more than seven times the model’s context length of

131 kb. For comparison, the smallest “minimal” bacterial genomes are ~580 kb in length

(76). We prompted the model to generate bacterial genomes using the species-level tokens

in the training dataset (Fig. 6A). To evaluate how closely our generated sequences resemble

natural genomes, we used CheckM (77), a tool originally designed to assess the quality of

bacterial DNA sequenced from nature. CheckM computes various metrics, including coding

sequence density and the presence of highly conserved prokaryotic marker genes. We used

these statistics to compare the key characteristics of our generated sequences with those of

natural genomes.

Notably, Evo generated sequences have nearly the same coding densities as natural

genomes, and substantially higher than that of random sequences (Fig. 6B). When

visualized, both natural and generated sequences display similar patterns of coding

organization (Fig. 6C), with sequences in close proximity typically found with the same

strand orientation; in bacteria, these closely linked groups of coding sequences typically

correspond to functionally tied gene clusters or operons. When using ESMFold to obtain

protein structure predictions corresponding to these coding sequences, almost all showed

predicted secondary structure and globular folds (Fig. 6, D and E, and fig. S28). Many

proteins also showed structural similarity to natural proteins involved in fundamental

molecular functions as annotated by gene ontology (GO) terms (Fig. 6, D and E). Across

all our generated sequences representing ~16 Mb, Evo was also able to generate 128 tRNA

sequences containing anticodons that correspond to all canonical amino acids (Fig. 6E).

We further observed that various genome-wide sequence patterns including the GC content,

dinucleotide frequencies, and certain codon usage patterns more closely resembled those of

natural genomes compared with random sequences (fig. S28, A to C). To assess the accuracy

Nguyen et al. Page 13

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of species-specific prompting, we calculated tetranucleotide usage deviations (TUDs), a

strong indicator metric of phylogenetic relatedness (78). We found strong correlations

between species-specific generations and their corresponding natural reference sequences,

with TUDs sufficiently accurate to reconstruct natural phylogenetic relationships among

the generated sequences (Fig. 6, F and G). We also examined stop codon frequencies

across reading frames, a conserved genomic feature in prokaryotes (79). TGA and TAA

stop codons appeared most frequently, whereas TAG was least common, consistent with

previously observed patterns in prokaryotic genomes (Fig. 6H) (80). By contrast, random

sequences showed an unbiased proportion of stop codons. These analyses collectively

demonstrate that Evo’s generated sequences capture multiple layers of genomic signatures

characteristic of natural prokaryotic genomes.

However, there are characteristics of these genomes that are unnatural. The generated

sequences do not contain many highly conserved marker genes that typically indicate

complete genomes and, across the ~16 Mb of sample sequence, Evo generated only three

rRNAs (81). Many of the protein structure predictions are of low confidence, are biased

toward evolutionarily simpler a-helical secondary structures (82), and have limited structural

matches to any entry in a representative database of naturally occurring proteins (fig. S28E).

These results suggest that Evo can generate genome sequences containing plausible high-

level genomic organization at an unprecedented scale without extensive prompt engineering

or fine-tuning. These samples represent a “blurry image” of a genome that contains

key characteristics but lacks the finer-grained details typical of natural genomes. This is

consistent with findings involving generative models in other domains, such as natural

language or image generation. For example, directly sampling from a large natural language

model typically produces sequences that are grammatically correct yet locally biased toward

simpler sentence constructions and that are globally incoherent, especially at long lengths.

Promisingly, in these domains, algorithmic techniques have emerged to improve the quality

of generations compared with sampling from the pretrained model alone (83–85). The

baseline generation quality observed without any fine-tuning suggests that Evo is also

amenable to these techniques.

Discussion

Evo is a genomic foundation model trained on hundreds of billions of DNA tokens across

the evolutionary diversity of prokaryotic life, capable of prediction and generation tasks at

the scale of individual molecules, molecular complexes, systems, and even whole genomes.

Based on a state-of-the art hybrid model architecture, Evo enables single-nucleotide-

resolution language modeling at a context length of 131,072. We conducted the first

scaling laws analysis of DNA pretraining across several architectures, where we observed

StripedHyena outperforming several baseline architectures, including Transformers. Evo

accurately performed zero-shot prediction across diverse fitness or expression prediction

tasks on proteins, ncRNAs, or regulatory DNA that matches or outperforms specialized

models while also understanding how mutations to individual genes can affect broader

organismal fitness. As a multimodal generative model, we use Evo to generate CRISPR-

Cas proteins and their noncoding guide RNAs, multicomponent transposable systems,

Nguyen et al. Page 14

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and megabase-long sequences that recapitulate the architecture of real genomes. We

experimentally validated the functional activity of EvoCas9–1 and Evo-generated IS200

and IS605 systems. We make open-access code and models for Evo publicly available at

https://github.com/evo-design/evo.

A model capable of genome-scale design has the potential to advance therapeutic

discovery, sustainability, and our understanding of fundamental biology but simultaneously

raises biosafety and ethical considerations. The Global Alliance for Genomics and

Health (GA4GH) (86) has developed principles for the oversight of genetic engineering

technologies and could provide a robust foundation for transparency, accountability, and

shared responsibility. Such a framework is essential to foster international cooperation

that benefits all humanity. A proactive discussion involving the scientific community,

security experts, and policy-makers is imperative to prevent misuse and to promote effective

strategies for mitigating existing and emerging threats. We open-source the model to

promote transparency and begin a dialogue with the broader scientific community, and we

apply the precaution of excluding eukaryotic viruses from our pretraining dataset. We further

include an extended supplementary discussion on safety and ethical considerations (see

supplementary materials). Clear, comprehensive guidelines that delineate ethical practices

for the field are required for the responsible development and use of genome-scale language

models.

Despite the notable capabilities of this first-generation DNA foundation model, a number

of technical limitations and challenges remain. We pretrained Evo on a dataset of 300

billion prokaryotic tokens, which represents a miniscule portion of petabytes of publicly

available genomic data. Because our model is trained only on prokaryotic data, our ability to

predict functional effects of mutations on human protein fitness is limited. Natural language

models often struggle to maintain coherent and diverse generation over long sequences, and

Evo can demonstrate similar properties. For example, we observed that many CRISPR-Cas

generations had clearly problematic sequences, such as missing or truncated cas genes. At

the genome-scale, Evo generates megabase-long sequences that demonstrate a high-level

understanding of genome organization, but it struggles to include key marker genes, such

as full sets of rRNAs. Improvement on long-range prediction or generation tasks will

require both methodological improvements and biologically motivated problem selection

and evaluation. These limitations mirror the constraints of natural language models, which

have been improved over time with increased scale, labeled data, prompt engineering, and

alignment with human preferences (39, 83–85, 87). We expect a similar trajectory for

models of DNA.

We expect that Evo will benefit from additional scale, longer context length, and more

diverse pretraining data. Given the success of language model–guided directed evolution

of proteins (88, 89), genomic language models may also help guide the directed evolution

of multigene systems. The coevolutionary information contained in these models could

improve molecular structure prediction in a multigene context (5, 47). With better

conditioning or prompt engineering, Evo could form the basis of a next-generation sequence

search algorithm by enabling metagenomic mining at a relational or a semantic level rather

than extracting literal sequences from existing organisms. The incorporation of eukaryotic

Nguyen et al. Page 15

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/evo-design/evo

genomes into Evo will need to consider the far higher complexity of these genomes and

require substantial resource investment in engineering, compute, and safety-related model

alignment. Combined with advances in large-scale genome modification (90), Evo expands

the scope of biological engineering and design to the scale of whole genomes.

Materials and methods

StripedHyena architecture

Evo is based on StripedHyena (34), a state-of-the-art hybrid model architecture for sequence

modeling. Evo comprises 32 blocks at a model width of 4096 dimensions. Each block

contains a sequence mixing layer, tasked with processing information along the sequence

dimension, and a channel mixing layer, focused on processing information along the model

width dimension. In the sequence mixing layers, Evo uses 29 hyena layers, interleaved

with 3 rotary (29) self-attention layers at equal intervals. We parametrize convolutions in

hyena operators using the modal canonical form described in reference (28). For the channel

mixing layers, Evo uses gated linear units (91, 92). Evo further normalizes the inputs to each

layer using root mean square layer normalization (93).

Hyena layers

Hyena (34) is a sequence mixer implementing an input-dependent (data-controlled) operator

via a composition of short convolutions, long convolutions and data-controlled gating

(Fig. 1B). Hyena belongs to the class of deep signal processing primitives (28, 34, 94),

designed for efficient, input-dependent computation in large-scale sequence models. Input

dependence allows an architecture built with deep signal processing layers to adapt such

computation based on the input, unlocking in-context learning (95, 96). Hyena relies on

structured operators compatible with fast multiplication algorithms, which can be evaluated

in subquadratic time, e.g., via Fast Fourier Transforms or parallel scans. The operators are

parametrized implicitly, i.e., by learning a map from positional embeddings, or the input, to

the parameters of the operator itself. Typical choices of implicit parametrizations are linear

projections, hypernetworks (34, 97) or linear state-space models in modal or companion

form (27, 28, 98–100).

Self-attention layers

Self-attention is the core sequence mixing operator of Transformer models. Self-attention

constructs the output sequence as a weighted combination of the input elements, where the

weights themselves are input-dependent. Given an input sequence, the forward pass of a

self-attention layer is

(Q, K, V) A(Q, K)V

A(Q, K) = softmax QKT

where queries Q ∈ ℝL × D, keys K ∈ ℝL × D, and values V ∈ ℝL × D are obtained through

a linear transformation of an input matrix U ∈ ℝL × D, e.g., V = UWv, and L denotes the

sequence length and D denotes the hidden dimension. The softmax is applied to rows of A.

Nguyen et al. Page 16

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The query, key, value terminology is borrowed from databases, where keys are used to index

stored values. Conceptually, the values of the attention matrix A(Q, K) measure the similarity

between queries and keys akin to matching queries to keys in a database.

Positional embeddings

By itself, the self-attention operator does not have any notion of the different positions of the

input embeddings in an input sequence. For this reason, it is generally supplemented with a

positional encoding mechanism. The attention layers of StripedHyena use a rotary position

embedding mechanism (RoPE) to model relative positional information (29). Position

information is encoded by rotating the query and key token vectors of the attention operator.

Specifically, RoPE implements a rotation to queries and keys, with the rotation magnitude

defined as a function of their relative position in the sequence.

To extend the context window length from 8k to 131k during our second pretraining stage,

we apply linear position interpolation to extend the rotary position embedding applied in the

first pretraining stage at 8k sequence length [for details, see (19)]. Interpolating enables the

model to continue leveraging its learned representations when applied to longer sequences

than it was originally trained on. We also tested other position interpolation methods but

found that they performed slightly worse than linear interpolation on our data.

Tokenization

In language modeling, tokens describe the smallest unit of semantic information that is

used by a model to process language. For example, tokens can indicate individual words

of a vocabulary or even lower-level semantic information such as individual characters.

Tokenization describes the process of mapping these semantic language units, such as words

or characters, to specific integer values, each indicating an entry in a lookup table. These

integer values are mapped by embedding layers to vectors, which are then processed by

the model in an end-to-end fashion. Evo tokenizes DNA sequences at single-nucleotide

resolution, using the UTF-8 encoding implemented in Python. During pretraining, Evo

uses an effective vocabulary of four tokens, one per base, from a total vocabulary of 512

characters, which allows for vocabulary expansion during subsequent downstream tasks. We

use the additional characters to enable prompting with special tokens during generation with

fine-tuned models.

OpenGenome datasets

The OpenGenome pretraining dataset (table S2) was compiled from three different sources:

(i) bacterial and archaeal genomes from the Genome Taxonomy Database (GTDB) v214.1

(77), (ii) curated prokaryotic viruses from the IMG/VR v4 database (36), and (iii) plasmid

sequences from the IMG/PR database (37). For GTDB, representative genomes for each

species were retained to reduce data redundancy.

For IMG/PR, only one representative per plasmid taxonomic unit (PTU) was kept.

For IMG/VR, sequences were retained only if they were labeled as “high-confidence”

according to the database metadata, and only one representative per viral operational

taxonomic unit (vOTU) was kept. These sequences were further curated to remove potential

Nguyen et al. Page 17

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

eukaryotic viruses by keeping only sequences whose assigned taxonomic classification

was found within a prokaryotic host at least twice. Next, the remaining taxonomic

classifications were inspected and further filtered to exclude all viruses assigned to

any of 19 families (Adenoviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae,

Hantaviridae, Hepadnaviridae, Herpesviridae, Orthomyxoviridae, Papillomaviridae,

Paramyxoviridae, Picornaviridae, Poxviridae, Reoviridae, Retroviridae, Rhabdoviridae,

Circoviridae, Geminiviridae, Picobirnaviridae) or 12 orders (Amarillovirales, Durnavirales,

Geplafuvirales, Herpesvirales, Lefavirales, Ortervirales, Orthopolintovirales, Piccovirales,

Picornavirales, Priklausovirales, Cirlivirales, and Mulpavirales). Next, viruses with poor

taxonomic specificity were excluded, including those with no assigned realm at all, and

those only assigned up to the level of r:Riboviria, r:Monodnaviria, k:Heunggongvirae,

k:Bamfordvirae, p:Preplasmiviricota, p:Cressdnaviricota, p:Pisuviricota, or c:Tectiliviricetes.

The CRISPR-Cas and IS200/IS605 fine-tuning datasets were compiled from a previously

described custom database gathered from multiple sources (101). Briefly, this custom

database includes genomic and metagenomic sequence data from NCBI RefSeq (102),

UHGG (103), JGI IMG (104), the Gut Phage Database (105), the Human Gastrointestinal

Bacteria Genome Collection (106), MGnify (107), Youngblut et al. animal gut metagenomes

(108), MGRAST (109), and Tara Oceans samples (110).

To compile the CRISPR-Cas genomic loci, this custom database was searched using profile

HMM models and the HMMER software package to identify Cas9, Cas12, and Cas13

sequences (111). Several pHMMs were collected from the CRISPRCasTyper annotation

tool (112), and a recent computational survey of TnpB and Cas12 (113). Custom Cas13

pHMMs that were previously generated by our group were also used (101). These models

were searched against our large custom database using hmmsearch and the parameter “-Z

1000000.” All hits that met E<1× 10−6 with at least one pHMM were kept. Only hits that

were at least 300 amino acids long and covered over 80% of the pHMM were kept. For all

hits to a given pHMM, only proteins that were within the middle 99% of the size distribution

were kept. Corresponding genetic loci were extracted from the database, including 8192

nucleotides of flanking sequence on both the 5′ and 3′ ends of the Cas effector CDS.

The tool minced was used to identify CRISPR arrays in the flanking sequences using the

parameters “-minRL 18 -maxRL 50 -minSL 18 -maxRL 50.” Only loci with both a predicted

Cas effector and a CRISPR array were retained. The final CRISPR-Cas loci were extracted

by first identifying the subsequence that covered both the Cas effector and the CRISPR

array, and then including additional flanking nucleotides on both sides up until 8192 were

retained for fine-tuning purposes. Only 1 locus per 90% identity Cas cluster was retained,

clustered using the MMseqs2 command “easy-cluster --cluster-reassign –cluster-mode 0

--cov-mode 0 -c 0.7 --min-seq-id 0.9” (114).

To compile the IS200/IS605 loci, this custom database was searched using a Pfam Y1 HUH

Transposase pHMM model (Pfam ID: PF01797). This pHMM identifies IS200/IS605 TnpA

proteins. All matches meeting E value < 1 × 10−6 that covered at least 80% of the pHMM

and were less than 400 amino acids were kept. 8196 nucleotides of CDS-flanking sequence

was then extracted for each hit. Loci that also contained TnpB coding sequences were

identified using previously compiled pHMMs (113), and a custom pHMM compiled using

Nguyen et al. Page 18

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

jackhmmer and the ISDra2 TnpB as an initial query against the MGnify protein database,

followed by a MAFFT alignment of hits and pHMM construction with HMMER (107, 111,

115). Hits that were between 250 and 650 amino acids in length were retained, and only

loci where the distance between the beginning and end of the TnpA and TnpB sequences

was less than 2500 nucleotides were retained. For TnpA-only loci, up to 300 nucleotides of

flanking sequence were added to either side of the CDS. For TnpA+TnpB loci, up to 300

nucleotides were added to the TnpA side of the IS200/IS605 element, while 600 nucleotides

were added to the TnpB side (to account for the presence of an ωRNA). Only 1 locus per

90% identity TnpA cluster was retained.

Training procedure

We pretrain Evo in two stages, first with a context size of 8k tokens, followed by a

second stage where we increase the context size to 131k tokens. Multistage sequence length

pretraining has been shown to reduce the overall number of compute hours required to

train long context models (116). The pretraining was distributed across GPUs using pipeline

parallel with 2 stages (pipeline parallel value of 2), where each stage processes a part of

the training pipeline (depthwise). This reduces the memory footprint while allowing us to

maximize throughput during training. In total, we trained Evo in stage 1 on 64 NVIDIA

H100 GPUs for 2 weeks and on 128 NVIDIA A100 GPUs in stage 2 for an additional

2 weeks. In total, Evo was trained on ~340B tokens, using ~2 × 1022 FLOPs. Because

OpenGenome contains 300B tokens, this equates to 1.13 epochs, where data-loading beyond

300B tokens would consist of repeated tokens that are uniformly randomly sampled in a

different order than in the first epoch. For specific generation tasks, we further fine-tuned

Evo, as described in the following sections. We also report long context perplexity scaling of

Evo 131k in fig. S2. Additional details on training settings are provided in table S1.

Dataloading

We use sequence packing to generate training samples. A sequence of the specified context

length is sampled at random from the entire training dataset, where the sampling is done

without replacement over an entire training epoch. Because some DNA sequences are

shorter than the context length, multiple DNA sequences can be appended until the context

length (8k or 131k) is reached; likewise, because some DNA sequences are longer than the

context length, a training sample could consist of a genomic subsequence. Individual DNA

sequences at the level of assembled contigs are separated by end-of-sequence (EOS) tokens.

Depending on the dataset or task, we additionally prepend special token(s) to condition the

model, for example, to steer its generations through prompting.

Hyperparameter tuning and direct model comparisons

Before training Evo, we carried out hyperparameter tuning on partially trained 7B

Transformer++ models and compared to similarly sized Hyena and StripedHyena models.

We swept batch size, learning rate and other architectural details. Even when controlling for

training iterations instead of compute (FLOPs), Transformer++ performance is substantially

worse than StripedHyena (fig. S4). Out of all the baselines, we find that StripedHyena

achieves the overall lowest perplexity at the 7B scale, consistent with the scaling rates

presented in Fig. 1G.

Nguyen et al. Page 19

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Scaling laws

We compare different classes of architectures via a compute-optimal protocol, aimed at

evaluating results on the compute-optimal frontier. Compute-optimal analysis studies the

best performance of a pretraining run given a compute budget, typically indicated in floating

point operations (FLOPs), and achieved by optimally allocating portions of the compute

budget to model size and dataset size. Architecture types differ in compute efficiency, as

well as how they allocate this compute budget.

We started by tuning hyperparameters such as learning rate and batch size for Transformer+

+ with a grid search, then used the same values for all architectures except in settings

where numerical instability was observed. To address instability, we lowered the learning

rate gradually and repeated the experiment until convergence. In all experiments, we

trained models with 8192 tokens in context length. For each compute budget defined by

a total FLOP count, we varied the model sizes (6 million to 1 billion parameters) and the

number of tokens trained. To measure model performance, we use the perplexity metric,

which indicates how well an autoregressive model performs at predicting the next token

of a sequence and is highly correlated with performance on downstream tasks. A lower

perplexity value indicates better performance.

Scaling laws procedure

We provide a summary of the steps involved in our scaling laws analysis. Quantifying

scaling rates allows us to predict performance as model size, dataset size, and compute grow.

1. Define a set of compute budgets to study. We use 8 × 1018, 2 × 1019, 4 × 1019,

and 8 × 1019 FLOPs.

2. Calculate the FLOPs (floating point operations) required to process a fixed input

size for the model architecture of interest (i.e., the “cost” of using the model).

3. Identify the model’s compute-optimal allocation for each compute budget: (a)

Select a wide range of possible model sizes and calculate for each model size the

corresponding number of tokens that need to be processed to reach the compute

budget. Other hyperparameters are chosen according to table S3. We generally

observe minor changes to model topology (depth, width) to only minimally

affect perplexity, aligning our results with the findings presented by (39) for

Transformers. (b) Train a model of each size and record its performance (e.g., in

terms of perplexity). (c) Identify the optimal compute allocation: Following prior

analysis, we fit a second-order polynomial as a function from (log) model size

to perplexity, and extract obtained the compute-optimal point as its minimum.

The compute-optimal point identifies the optimal allocation of model size and

training tokens at the given compute budget.

After deriving the compute-optimal scaling rates (Fig. 1G), we compare architectures

and compute optimal allocation of tokens and model size (fig. S5). In fig. S3, we also

show rates for compute-suboptimal model sizes by architecture. We quantify the effect on

perplexity scaling caused by a suboptimal allocation of compute budget to model or dataset

size (e.g., training a smaller model for more tokens). We estimate the compute-optimal

Nguyen et al. Page 20

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

model size for each compute budget, then reduce it by a percentage (the offset). The

corresponding perplexity is obtained via the IsoFLOP curves (Fig. 1F). Transformer++

perplexity scaling rapidly degrades outside the compute-optimal frontier, in contrast to

Hyena and StripedHyena. Architecture details of models trained for our scaling law analysis

provided in table S3.

Transformer++

We use a modern decoder-only Transformer architecture with rotary position embeddings

(29), pre-norm with root mean square layer normalization, and SwiGLU as channel mixer.

The inner width of the SwiGLU is 4/3 the model width. We experimented with grouped-

query attention (GQA) (117) and found minimal differences in final loss, suggesting the

technique may be suited to DNA sequence modeling, to further reduce memory footprint

during inference. All scaling results with Transformer++ do not use GQA.

Hyena

The Hyena baseline is designed with the same architecture improvements applied to the

Transformer++ model. We replace all multi-headed self-attention layers with hyena layers

and use a modal canonical parametrization for the long convolution, with state dimension 8.

Mamba

We use the implementation of Mamba as provided by the public repository (https://

github.com/state-spaces/mamba).

Generating DNA sequences with Evo

We sample sequences from Evo using standard top-k and temperature-based methods for

autoregressive models. Evo benefits from the fast recurrent mode of hyena layers, enabling

lower latency and memory cost (24, 28). In particular, we use the recurrent form of the

modal canonical form as shown in (28), first processing the prompt with a Fast Fourier

Transform modified to return output and state. We use a cache for the states of short

convolutions. Evo can generate sequences of up to 650k nucleotides on a single 80GB GPU,

in contrast to other long context methods for dense Transformers requiring a larger number

of nodes. We use standard kv-caching for rotary attention layers in StripedHyena.

Controllable generation

We follow standard language model prompting techniques that condition generation on a

given prefix. For class-conditional generation we prompt with a single token, representing

the desired class, or genomic sequence type (e.g., CRISPR-Cas system, IS200/605). The

model can also be steered by prompting on desired DNA subsequences.

Protein function prediction

We used DMS datasets to benchmark protein and nucleotide language models in their

ability to predict mutational effects on protein function. In all cases, we used the nucleotide

sequences reported by the original study authors. We limited our analysis to prokaryotic and

Nguyen et al. Page 21

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/state-spaces/mamba
https://github.com/state-spaces/mamba

human proteins, where notably the Evo training dataset only contains prokaryotic protein

sequences.

To compile the nucleotide information from prokaryotic DMS studies, we used all the

datasets listed as “prokaryote” in the ProteinGym benchmark for which we could also find

nucleotide-level information reported by the original study authors. This resulted in nine

studies: a β-lactamase DMS by Firnberg et al. (118), a β-lactamase DMS by Jacquier et al.
(119), a CcdB DMS (120), a multiprotein thermostability dataset (121), an IF-1 DMS (122),

an Rnc DMS (123), an HaeIII DMS (124), a VIM-2 DMS (125), and an APH(3′)II DMS

(126).

To compile the nucleotide information from human DMS studies, we narrowed the scope of

the set of datasets used in our human benchmark to the human datasets used in reference

(45) to benchmark mutational effect predictors. We also limited our analysis to studies

where we could also find nucleotide-level information reported by the original study authors.

This resulted in six studies:a CBS DMS (127), a GDI1 DMS (128), a PDE3A DMS (129), a

P53 DMS by Kotler et al. (130), a P53 DMS by Giacomelli et al. (131), and a BRCA1 DMS

(132).

We compared Evo (pretrained with 8k context) to two genomic DNA language models:

GenSLM 2.5B, which was trained with a codon vocabulary on sets of genes from

prokaryotic organisms (15) and Nucleotide Transformer 2B5_multi_species, which was

trained with a 6-mer nucleotide vocabulary on genome sequences from prokaryotic and

eukaryotic species (16). We also compared Evo to several protein language models trained

on nonredundant, generic corpora of protein sequences: CARP 640M (46), ESM-1v (41),

ESM-2 650M, ESM-2 3B (47), ProGen2 large, and ProGen 2 xlarge (48). For studies that

provide models with multiple parameter sizes, we selected the largest size on which we

could perform inference with an 80 GB NVIDIA H100 GPU on sequences from all our

benchmarked studies without exceeding GPU memory. We also included ESM-2 650M

and ProGen2 large given that these models have sometimes shown better performance at

function prediction than larger versions of these models (44).

To compare nucleotide and protein language models, we used all unique nucleotide

sequences and their corresponding fitness values as reported by the original studies.

Occasionally, we observed that the fitness values reported for nucleotide sequences differed

from fitness values reported for protein sequences; in such cases, we used the fitness

values reported for nucleotide sequences and evaluated the protein language models using

the translated sequence. In cases where there are multiple nucleotide sequences for a

single protein sequence due to different codon usage, the nucleotide language models

were evaluated on each unique nucleotide sequence and the protein language models were

evaluated on the coding sequence corresponding to each unique nucleotide sequence; this

means that a protein language model could have been evaluated on the same protein

sequence multiple times for a given study. Some studies report fitness values for mutations

that involve stop codons; in such cases, we evaluated the nucleotide language model on the

sequence containing the stop codon and excluded these examples from the protein language

model benchmark.

Nguyen et al. Page 22

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We computed the Spearman correlation between the experimental fitness values and the

sequence likelihood (for autoregressive language models) or the sequence pseudolikelihood

(for masked language models). When using Evo sequence likelihoods to score sequences,

we also prepend the EOS token (used in the pretraining data to delimit different sequences)

to the full sequence, which we find empirically to boost zero-shot performance. We assessed

statistical significance of the Spearman correlation coefficient under a null hypothesis that

the correlation coefficient is drawn from a t-distribution with N − 2 degrees of freedom,

where N is the number of samples over which we compute the correlation. We used this

null distribution to compute a P value based on the observed correlation. We used the scipy

Python library (https://scipy.org/) to compute these values.

ncRNA function prediction

We used DMS datasets to benchmark protein and nucleotide language models based on their

ability to predict mutational effects on ncRNA function. Given that no well-established

benchmark datasets exist for ncRNA function prediction, we curated the literature for

examples of ncRNA mutational scanning experiments. We obtained the following datasets:

a ribozyme DMS by Kobori et al. (133), a ribozyme DMS by Andreasson et al. (134), a

tRNA DMS by Domingo et al. (135), a tRNA DMS by Guy et al. (136), a ribozyme DMS by

Hayden et al. (137), a ribozyme DMS by Pitt et al. (138), and a rRNA mutagenesis study by

Zhang et al. (51).

We compared Evo (pretrained with 8k context) to the nucleotide language models described

above as well as RNA-FM, which was trained on a single-nucleotide vocabulary on short

ncRNA sequences (50). Like the methods applied to protein coding sequences above, we

compiled experimental fitness values for each ncRNA variant. We computed the Spearman

correlation between the experimental fitness values and the sequence likelihood (for

autoregressive language models) or the sequence pseudolikelihood (for masked language

models). When scoring sequences with Evo sequence likelihood, we also prepend the EOS

token to each sequence. Correlation coefficients and associated P values were computed as

described above.

Gene expression prediction from regulatory DNA

From LaFleur et al. (52), we obtained a dataset of 5193 promoter sequences that we

randomly split into 4673 promoters in the training dataset and 520 in the validation dataset

following the train-validation split sizes used in the original study. We also obtained another

5391 promoter sequences from the same study, which we used as a second validation

dataset. We also obtained 4350 promoter sequences from Hossain et al. (54), 10,898

promoter sequences from Urtecho et al. (53), and 1493 promoter sequences from Yu et
al. (55), which we used as held-out test sets. The datasets were further processed to remove

the background DNA sequence by identifying the subsequence with the maximum predicted

transcription initiation rate using the method of LaFleur et al. (52). We also obtained a

dataset of 12,243 promoter-RBS sequences from Kosuri et al. (56), which we used as

an additional test set. All promoter sequences had associated activity labels related to

gene expression and the data from Kosuri et al. (56) quantifies both mRNA and protein

expression. The supervised tasks described below were all trained only on data generated by

Nguyen et al. Page 23

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://scipy.org/

LaFleur et al. (52) and then evaluated based on their ability to make predictions on data from

other studies.

For the promoter activity prediction tasks, we computed the predictive performance of

promoter GC content and the zero-shot sequence likelihoods from Evo and from GenSLM

on the four test datasets. When scoring sequences with Evo sequence likelihood, we

prepended the EOS token to each sequence. We evaluated the performance of Promoter

Calculator (52) on the four test datasets, using the minimum predicted dG_total across the

forward sequence as the prediction score.

We additionally trained supervised models on the training set of 4673 promoters and

associated activity values, using the two validation datasets described above to guide model

development. These supervised models used either one-hot-encoded sequence embeddings

or neural embeddings from Evo. The neural embeddings leveraged the output of the last

hidden hyena layer, which takes the form of a matrix with a dimension of the sequence

length × the hidden dimension (4096). On these embeddings, we trained either a ridge

regression model or a convolutional neural network (CNN). To implement ridge regression,

we used the RidgeCV module from scikit-learn with default values, which identifies the

α hyperparameter used to weight the ℓ2-regularization term. As input features for ridge

regression, we additionally averaged the Evo embedding over the sequence dimension to

produce an embedding vector of length 4096 for each sequence

The CNN consists of two convolutional layers, each followed by a ReLU activation

function. The first convolutional layer starts with an input embedding (where the sequence

dimension was suffix-padded with zeros up to length 256) with 4096 channels, using a

kernel size of 8 and a stride of 1, with “same” padding to preserve the input sequence length.

The second convolutional layer takes the output from the first layer and applies similar

operations. Following the convolutional layers, a max pooling layer with a kernel size of

7 and a stride of 1 is applied, with padding adjusted to maintain the sequence length. The

pooled output is then flattened into a two-dimensional tensor, which is passed through a

fully connected layer that reduces the data to 128 channels. A final fully connected layer

further reduces the data to a single output. The forward pass through the network involves

applying the ReLU activation after each convolutional and fully connected layer (except for

the final output layer). The model was trained for 10 epochs with the Adam optimizer, a

learning rate of 0.0001, β1 = 0.9, and β2 = 0.999.

For the protein expression prediction task, we used the data linking RBS sequences

to protein expression from Kosuri et al. (56). We evaluated the zero-shot predictive

performance of the sequence likelihoods from Evo when only providing the model with

the sequence of the promoter, the sequence of the RBS, or the sequence of the promoter-

RBS pair. When scoring sequences with Evo sequence likelihood, we also prepend the

EOS token to each sequence. We also evaluated the predictive performance of the GC

content of the promoter-RBS concatenated sequence and the zero-shot likelihoods from

GenSLM. We also evaluated the performance of RBS Calculator (57, 58) by providing the

online webtool (https://salislab.net/software/predict_rbs_calculator) with a simulated mRNA

sequence created by concatenating the RBS sequence and the sequence of sfGFP used

Nguyen et al. Page 24

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://salislab.net/software/predict_rbs_calculator

by Kosuri et al. (56). To ensure that the Spearman correlation is comparable across these

settings, we computed the correlation over all 12,243 examples (which involves duplicating

sequences in the promoter-alone or RBS-alone settings).

CRISPR-Cas fine-tuning and generation

To generate CRISPR-Cas systems, we fine-tuned Evo by continuing to train the 8k-context

pretrained model on a dataset of CRISPR-Cas sequences, which was curated as described

above. We retained most of the hyperparameters used during pretraining but set the batch

size to 524,288 tokens and an initial learning rate of 0.00009698, which was the learning

rate at the final step of pretraining. During fine-tuning, we prepended a single class token

corresponding to the type of Cas protein (Cas9, Cas12, or Cas13), which was identified as

described in the OpenGenome datasets section; this class token was then followed by the

nucleotide sequence. We also modified the dataloader such that each sample provided to the

model during training would begin with the first token of the CRISPR-Cas sequence and,

if a sequence was shorter than the context length, we padded the sequence to the remaining

context (where padding did not contribute to the loss computation). This ensured that each

training sample would correspond to a single CRISPR-Cas sequence. We fine-tuned the

model for ~10 epochs.

We prompted the model with a given class token and one additional character for each

sequence generation. For example, to prompt for Cas9 sequences, we used either “``” or

“`A” as the Cas9 prompt, since we found that, in some instances, adding an additional

random nucleotide character would improve the quality of generations. We performed

standard temperature-based and top-k autoregressive sampling (139). In our generations,

we performed an exhaustive sweep consisting of temperatures of 0.1, 0.3, 0.5 and top-k
values of 2 and 4. All sampled sequences were then combined and used for downstream

extraction and analysis of candidate CRISPR systems.

CRISPR-Cas sampling evaluation

The in silico Cas evaluation pipeline consisted of an initial open reading frame (ORF) search

using Prodigal (140) and subsequent profiling of the extracted ORFs using hidden markov

model (HMM) profiles for each Cas subtype. Sampled sequences with a positive pHMM hit

with an E value under 1 × 10−3 and a sequence length above a given threshold were further

analyzed using the MinCED package to identify possible CRISPR arrays (141). Generations

with Cas ORFs and CRISPR arrays were aligned against Cas ORF sequences in the training

data with MMSeqs2 to identify the closest sequences in the training data in sequence

identity (114). We then performed MAFFT alignments with nearest hits to recompute

alignments. MAFFT alignments were trimmed to 80% of the full alignment length centered

at the middle of the alignment and end-gaps were removed before determining an estimate

for percent identity to the closest item in the training data (115). To assess generation

quality, we computed a “degeneracy score” as the percent coverage of a sequence by

any repetitive substring longer than a cutoff value. For example, the degeneracy score of

“ATAGAAAA-AATAGGGGGAGA” with a cutoff of 4 would be 0.55.

Nguyen et al. Page 25

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To select candidates for experimental validation, Cas9 generations with an ORF sequence

identity higher than 90% to a training sequence were first filtered out. Remaining

generations were then scored based on the distribution of mismatches in the pairwise

alignments between the candidate sequence and its closest hit in the training dataset.

Sequences with alignments containing an even distribution of mismatches across the ORF

sequence were scored highly and those with an uneven distribution (e.g., concentration of

mismatches or gaps at the N and C termini) were down-weighted. The Cas9 ORFs from

the top-ranking 2000 generations were folded with AlphaFold2 (5). From the predicted

structures, generations were filtered based on pLDDT, radius of gyration, the presence of a

detected tracrRNA sequence, and the presence of RuvC and HNH domains in the Cas9 ORF.

The Biotite package was used to calculate radius of gyration (142). CRISPRtracrRNA was

used to extract potential tracrRNA sequences from candidate generations and cofolded with

the extracted crRNA sequence using RNAmultifold (143, 144). The final 11 Evo-generated

Cas9 candidates were selected from this subset through manual inspection of predicted Cas9

structure and predicted sgRNA secondary structure.

CRISPR-Cas in vitro cleavage

For an initial screen of 11 selected Cas9 candidates, we expressed the protein and sgRNA

in vitro using the PURExpress (IVTT) kit (NEB E6800S) and the HiScribe T7 High

Yield RNA Synthesis (IVT) kit (NEB E2050S), respectively, following the manufacturer’s

recommendations. The sgRNA IVT product was column-purified using the 500 µg Monarch

RNA Cleanup kit (NEB T2050L) before use; the in vitro expressed protein was not purified

before use. The IVT and IVTT products were performed in 20 µL reactions with 2 µL

of expressed protein, 2 µL of gRNA, 2 µL of DNA target at a final concentration of 1

nM, and 2 µL of NEBuffer r3.1 (NEB B6003S) at a final concentration of 1X. Cleavage

reactions were incubated at 37°C for 20 hours and quenched with a final concentration of

50 mM EDTA (Invitrogen no. 15575020) followed by 2 µL of RNase A treatment (NEB

T3018L) for 30 min at 37°C and 2 µL of Proteinase K treatment (NEB P8107S) for 15 min

at 65°C. Cleavage products were then column-purified using a QIAquick PCR Purification

kit (Qiagen no. 28104) and stored at 4°C before performing gel electrophoresis on Novex

4 to 12% TBE gels (Invitrogen EC62352BOX) at a constant voltage of 200 V. Gels were

stained with SYBR Gold Nucleic Acid Gel Stain for 5 min at a 1X concentration (Invitrogen

S11494).

SpCas9 and EvoCas9–1 was recombinantly expressed in the E. coli strain OverExpress

C43(DE3) (Sigma Aldrich CMC0019) and purified via His-tag and size-exclusion

chromatography using the procedure described in the section “CRISPR-Cas recombinant

expression and purification.” 2 µL of commercially available SpCas9 (NEB M0386T),

purified SpCas9, or purified EvoCas9–1 were incubated with 2 µL of either a targeting

or nontargeting gRNA and 2 µL of a DNA target at a 10:10:1 molar ratio of

Cas9:sgRNA:target. A final concentration of 1 nM was used for the target and final

concentrations of 10 nM for both the Cas9 protein and sgRNA. Cleavage reactions were

performed in 20 µL volumes with 2 µL of NEBuffer r3.1 (NEB B6003S) used at a

final concentration of 1X. Reactions were incubated at 37°C for up to 12 hours with

timepoints collected at 5 min, 15 min, 1 hour, 3 hours, and 12 hours. Separate and

Nguyen et al. Page 26

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

independent reactions were used for each timepoint and condition and quenched with a

final concentration of 50 mM EDTA (Invitrogen no. 15575020) before treating with 2

µL of RNase A (NEB T3018L) at 37°C for 10 min and 2 µL of Proteinase K (NEB

P8107S) at 65°C for 15 min. Cleavage products were column-purified using a QIAquick

PCR Purification kit (Qiagen no. 28104) before performing gel electrophoresis on a Novex

4 to 12% TBE gel (Invitrogen EC62352BOX) at a constant voltage of 200 V. Gels were

stained with SYBR Gold Nucleic Acid Gel Stain for 5 min at a 1X concentration (Invitrogen

S11494).

CRISPR-Cas recombinant expression and purification

The sequence encoding the protein of interest was subcloned into a protein expression

vector containing an N-terminal 8xHis tag followed by a TEV protease cleavage site

using Gibson assembly. The protein was expressed in E. coli strain OverExpressC43(DE3)

(MilliporeSigma) grown in Terrific Broth at 18°C for 16 hours after induction with 0.4 mM

IPTG. The protein was purified by sequential affinity and size exclusion chromatography

steps. Cells were centrifuged at 4000 ×g, 4°C for 15 min and resuspended in lysis buffer

(50mM Tris–HCl pH 7.5, 0.5 M NaCl, 2 mM MgCl2, 10 mM imidazole, 10% glycerol)

supplemented with EDTA-free protease inhibitor tablets (Roche) and 1 mg/mL lysozyme

(ThermoFisher). Cell suspensions were then disrupted using a sonicator (Fisher Scientific).

Crude lysate was subsequently ultracentrifuged at 40,000 ×g, 4°C for 45 min using a 70Ti

rotor in a XE-90 ultra-centrifuge (Beckman Coulter). Clarified lysate was then filtered

through a 0.22 µm filter and loaded onto a 5 µL HisTrapFF column (Cytiva) using a

peristaltic pump.

After the entire volume of the clarified lysate was flowed through the HisTrapFF affinity

column, the column was washed extensively with Wash Buffer (50 mM Tris–HCl pH 7.5,

0.5 M NaCl, 30 mM imidazole, and 10% glycerol). The HisTrapFF column was then

connected to an AktaPure system (Cytiva) and eluted using a linear gradient of Elution

Buffer (50mM Tris–HCl pH 7.5, 0.5 M NaCl, 0.5 M imidazole, and 10% glycerol) in 1.5

µL fractions. Fractions corresponding to the peak identified to contain the protein of interest

were pooled and concentrated using an Amicon 30 kDa MWCO filter (MilliporeSigma)

before overnight cleavage of the 8xHis tag using TEV protease. Following TEV protease

cleavage, the solution was applied to a second HisTrapFF column to remove the cleaved tag

from the preparation. The column was washed with 15 µL Wash Buffer and the flow through

was collected for concentration using an Amicon 30 kDa MWCO filter (MilliporeSigma).

The concentrated protein was then applied to a Superdex200 10/300 column for purification

by size exclusion chromatography, with an isocratic elution program using SEC Buffer (20

mM Tris–HCl pH 7.5, 0.5M NaCl, and 1 mM DTT, 10% glycerol). Eluted protein was

concentrated again using an Amicon 30 kDa MWCO filter (MilliporeSigma), flash frozen in

liquid nitrogen andstoredat−80°C.

IS200/IS605 fine-tuning and generation

To generate IS200 and IS605 systems, we fine-tuned Evo by continuing to train the 8k-

context pretrained model on a dataset of IS200/IS605 sequences, which was curated as

described above. We retained most of the hyperparameters used during pretraining but set

Nguyen et al. Page 27

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the batch size to 524,288 tokens and an initial learning rate of 0.00009698, which was the

learning rate at the final step of pretraining. During pretraining, we prepended a start token

to each sequence labeling whether the system corresponded to an IS200 or an IS605 system.

We used the token corresponding to the character “~” as the IS200 prompt and the token

corresponding to the character “#” as the IS605 prompt. We also modified the data loader

such that each sample provided to the model during training would begin with the first

token of the IS200/IS605 sequence and, if a sequence was shorter than the context length,

we padded the sequence to the remaining context (where padding did not contribute to the

loss computation), similar to the strategy described for CRISPR-Cas9 systems above. We

fine-tuned the model for ~10 epochs.

We prompted the model with a special prompting token for each sequence generation.

We performed standard temperature-based and top-k autoregressive sampling (139). In our

generations, we performed an exhaustive sweep consisting of temperatures of 0.1, 0.3,

0.5, 0.7, 0.9, 1.0, and 1.3, and top-k values of 2 and 4. Sampled sequences were further

processed by splitting on the first whitespace character, keeping the first non-whitespace

sequence, and only keeping generated sequences that were composed entirely of valid

nucleotides.

We analyzed generated sequences using Prodigal to identify coding sequences and proteins

(140), followed by hmmsearch (-Z 1000000) using pHMMs to identify TnpA and TnpB

sequences (111), and cmsearch (-Z 4) using covariance models developed in a previous

publication (66) to identify candidate wRNAs (145). Candidate TnpA sequences were kept

if they had an E value < 1 × 10−3 to the pHMM and if they covered at least 50% of the

pHMM. Candidate TnpB sequences were kept if they had an E value < 1× 10−3 to at least

one pHMM, if they covered at least 50% of the pHMM, and if they were between 300 and

600 amino acids in length.

Predicted TnpA and TnpB protein sequences were aligned back to proteins in the training

set using MMseqs2 (114). The top three hits for each protein were extracted and separately

aligned using the MAFFT default algorithm to estimate the amino acid identity across the

full lengths of the two sequences (115). To account for different start codons and to generate

a more conservative percentage identity estimate, these alignments were trimmed to the

middle 80% of each sequence, end gaps were trimmed, and the amino acid percent identity

was recalculated, which we called a “trimmed percent identity.”

TnpA and TnpB protein sequences were binned by distance from the training set in 9

equal width bins from 10% to 100% trimmed percent identity. 200 proteins were randomly

selected from each bin for TnpA proteins that appeared in the absence of a TnpB protein

(IS200-like), TnpA proteins that appeared with a TnpB protein (IS605-like), and TnpB

proteins that appeared with a TnpA protein (IS605-like). ESMFold was used to fold

all 5400 proteins, with TnpA protein sequences folded as dimers with a glycine pseudo-

linker of length 100. The mean backbone atom pLDDT was calculated and reported as

a measurement of ESMFold prediction confidence. Example TnpA and TnpB proteins

were aligned to the 2VIC and 8BF8 Protein Data Bank (PDB) structures, respectively,

using the US-align tool (146), right-end and left-end DNA sequences from PDB structures

Nguyen et al. Page 28

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2VIC and 2VHG were overlayed on the aligned structure, and structures were visualized

in PyMOL (147). RNAfold from the ViennaRNA package was used to fold the predicted

ωRNA with default parameters (148, 149). Visualizations of ωRNAs were drawn using R2R

(150). Visualizations of ISEvo1 TnpA and TnpB were also computed using AlphaFold3 by

uploading sequences to the AlphaFold Server (64).

Evo was also used to calculate the entropy of the conditional probabilities at each position

in each sequence with the pertinent special token prepended. For example, the entropy at

position i was calculated using the likelihoods p xi ∣ x1, …, xi − 1 over the entire vocabulary.

We then visualized these entropies alongside the annotated sequence positions for several

canonical IS200/IS605 systems and summarized the average entropy values within 250 bp of

TnpA and TnpB coding sequences.

IS200/IS605 categorical Jacobian analysis

We computed the “categorical Jacobian” matrix on a sequence of nucleotides based on a

procedure introduced by Zhang et al. (70) and clarified in the accompanying code at the

GitHub repository (https://github.com/zzhangzzhang/pLMsinterpretability). To summarize

this procedure, let x = x1, x2, …, xL , xi ∈ X denote a sequence of length L where in our

study we define X = “A”, “C”, “G”, “T” to be a nucleotide vocabulary. Let f:XL ℝL × |X|

denote the function for computing the language-model logits (where a softmax function

computed over the logits for a given position corresponds to the language-model likelihoods

for that position) given an input sequence x.

Now we define a sequence x xi = x1, …, xi, …, xL as the sequence x mutated to xi ∈ X
at position i ∈ [L], where [L] is defined as the set 1, 2, …, L . We also define

g x, xi, i = f(x) − f x xi where g:XL × X × [L] ℝL × |X| is a function that computes the

difference in logits between the original sequence x and the mutated sequence x xi .

The “categorical Jacobian” tensor J is then defined as

g(x, “A”, 1) ⋯ g(x, “T”, 1)
⋮ ⋱ ⋮

g(x, “A”, L) ⋯ g(x, “T”, L)

which requires mutating x to all nucleotides at all positions. Note that J ∈ ℝL × |X| × L × |X|.

This tensor J is then modified to produce a mean-centered tensor J by computing each entry

in this tensor as

Ji, j, k, l = Ji, j, k, l − 1
L ∑

i′ = 1

L
Ji′, j, k, l − 1

X ∑
j′ = 1

X
Ji, j′, k, l

− 1
L ∑

k′ = 1

L
Ji, j, k′, l − 1

X ∑
l′ = 1

X
Ji, j, k, l′

and is then symmetrized by computing, for each entry

Nguyen et al. Page 29

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/zzhangzzhang/pLMsinterpretability

Ji, j, k, l = 1
2 Ji, j, k, l + Jk, l, i, j

to produce a final symmetrized tensor J.

We can turn J into a positional “couplings map” matrix C′ ∈ ℝL × L in which each entry

can be intuitively thought of as representing a “Euclidean” magnitude of the change in the

logits across all values of the vocabulary |X|, where a larger magnitude change indicates a

greater information “coupling” between the two corresponding positions; more concretely,

to calculate each entry in C′, we compute

Ci, j
′ = ∑

n = 1

X
∑

m = 1

X
Ji, n, j, m

2

1
2

We now define the “average product correction” (APC) function a: [L] × [L] ℝ as

computing, for each entry in a matrix X ∈ ℝL × L

a(i, j; X) = Xi, j − ∑i′ = 1
L xi′, j ∑j′ = 1

L xi, j′

∑i′ = 1
L ∑j′ = 1

L Xi′, j′

− 1 i = j

where 1 ⋅ ∈ 0, 1 is the indicator function. We are now ready to define the final matrix,

C ∈ ℝL × L, which is obtained by computing, for each entry in C

Ci, j = a i, j; C′

Throughout the text, when we refer to the “categorical Jacobian matrix” or simply the

“categorical Jacobian,” we are referring to the matrix C.

We computed the categorical Jacobian matrix using Evo fine-tuned on IS200/IS605

sequences for natural IS605 elements ISHp608, ISDge10, and ISDra2 using the full IS

sequence flanked with 500 bp of natural context on either side, where each pair of flanking

sequences is extracted from the best BLAST (151) hit against the nr/nt databases for the IS

sequence from ISFinder (71).

IS200/IS605 filtering of generations and construct design

To nominate generated IS200/IS605 sequences for synthesis and experimental validation,

the sequences were further curated as follows. TnpA proteins from generated sequences

were first searched with blastp (151) against four natural TnpA proteins that were used as

positive controls, originating from IS200/IS605 elements ISSpn6, ISHp608, ISDge10, and

ISStin10. Alignments were filtered to keep only those that were between 100 and 200 amino

acids in length, and to keep only those that had a trimmed percent identity with the nearest

Nguyen et al. Page 30

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

training example that was <90%, and those that were at least 50% identical to the nearest

positive control as estimated by the blastp alignment. Structures of TnpA proteins from the

remaining 723 ISSpn6like, 697 ISHp608-like, 123 ISDge10-like, and 1686 ISStin10-like

generated sequences were predicted using ESMFold (47) as monomers and only proteins

with mean pLDDTs ≥0.7 were retained. Generations were further reduced by selecting for

generations where the TnpA protein contained at least one HUH and one YXXXQ amino

acid motif, had a TnpA start codon within ≤500 bp from the start of the generation, and

where the TnpA protein length was ≤180 amino acids.

For remaining IS200-like generations, we further required that at least 250 bp be on either

side of the predicted TnpA CDS. The 200 bp sequences flanking the TnpA CDS were

searched for perfect hairpins (no mismatches or gaps allowed in the stem, and loop length

≤5 bp), and sequences with max length perfect hairpin stems ≤6 bp in the 200bp left of the

TnpACDS or ≤8 bp in the 200 bp right of the TnpACDS were filtered out (fig. S20C).

For the 247 ISStin10-like and 102 ISSpn6-like generations passing these filters, we

computed upstream base pair propensity vectors using ViennaRNA (144) for the 200

bp on either side of the TnpA CDS (fig. S20D) by taking the row sum of the base

pair propensity matrix where all pairwise base pair propensities were calculated using

ViennaRNA.get_pr(i, j) for i ≤ j. The resulting upstream base pair propensity vectors for

each generation were hierarchically clustered with the upstream base pair propensity vectors

for ISSpn6 and ISStin10 on Euclidean distance with the UPGMA algorithm. A dendrogram

threshold was chosen manually by visual examination, and selected clusters were extracted

using scipy.cluster.hierarchy. fcluster (fig. S20E). This process was repeated with remaining

IS200-like candidates with best matches to ISStin10 against the IStin10 upstream base pair

propensity vectors (fig. S20F), as well as with best matches to ISSpn6 against the ISSpn6

upstream base pair propensity vectors (fig. S20G). For any remaining sequences, the TnpA

dimer structure was predicted using AlphaFold-Multimer-v2.3.0 via ColabFold (152) using

two models with three recycles each, and sequences with TnpA dimer structures that did not

appear to dimerize via pAE scores were discarded.

Remaining candidates were formatted for IDT synthesis as 520 bp sequences containing

30 bp of filler sequence containing a primer binding site for amplification followed by

the 200 bp to the left of the TnpA CDS followed by 60 bp of filler sequence containing

primer binding sites for two primers facing out followed by the 200 bp to the right of

the TnpA CDS followed by 30 bp of filler sequence containing a primer binding site for

amplification (data S1). Resulting sequences were uploaded to the IDT web portal and 12

ISStin10-like and 12 ISSpn6-like candidates were selected from the sequences that had

green and yellow IDT synthesizability scores. The TnpA corresponding to these sequences

were codon optimized using the IDT codon optimization tool set to E. coli and flanked

with the standard T7 promoter, RBS, and T7 terminator sequences for PURExpress (NEB)

as listed in the manufacturer’s manual. An additional TnpA mutant construct in which

any YXXXQ motif in the sequence was mutated to AXXXQ was also designed for each

candidate. The codon-optimized TnpA and TnpA mutant protein coding sequences for

PURExpress and end-containing sequences were ordered as IDT eBlocks.

Nguyen et al. Page 31

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For remaining IS605-like generations, we further required that at least 250 bp be upstream

of the predicted TnpA CDS and that at least 200 bp be downstream of the predicted TnpB

CDS. We then filtered for sequences with TnpB protein start codon distances of at most 100

bp downstream of the TnpA protein stop codon.

For the 407 ISHp608-like and 67 ISDge10-like generations passing these filters, we

formatted the ends for IDT synthesis as 520 bp sequences containing 30 bp of filler

sequence containing a primer binding site for amplification followed by the 200 bp to

the left of the TnpA CDS followed by 60 bp of filler sequence containing primer binding

sites for two primers facing out followed by the −50:150 bp to the right of the TnpB CDS

followed by 30 bp of filler sequence containing a primer binding site for amplification (data

S1).Resulting sequences were uploaded to the IDT web portal and only the 37 ISDge10-like

and the 20 ISHp608-like sequences that were green by IDT synthesizability scores were

retained. For these sequences, the TnpA dimer structure was predicted using AlphaFold-

Multimer-v2.3.0 via ColabFold (152) using two models with three recycles each, and

sequences with TnpA dimer structures that did not appear to dimerize via pAE scores were

discarded. From the remaining sequences, 12 ISStin10-like and 12 ISSpn6-like candidates

were selected ensuring that the best sequence identity matches to the fine-tuning set were

≥50%. For final synthesis and experimental validation, a different 60 bp filler sequence

was used for the ISHp608-like candidates compared to the ISStin10-like, ISSpn6-like, or

ISDge10-like sequences to eliminate a primer-binding site containing a TTAC, which is the

canonical ISHp608 target site. The TnpAs corresponding to these 24 candidate sequences

were codon optimized using the IDT codon optimization tool set to E. coli and flanked

with the standard T7 promoter, RBS, and T7 terminator sequences for PURExpress (NEB)

as listed in the manufacturer’s manual. An additional TnpA mutant construct in which any

YXXXQ in the sequence was mutated to AXXXQ was also designed for each candidate.

The codon-optimized TnpA and TnpA mutant PURExpress and end-containing sequences

were ordered as IDT eBlocks.

Similar eBlocks encoding TnpA using the natural sequence, encoding a TnpA mutant with

the catalytic tyrosine mutated to alanine, and a 520 bp sequence containing the ends were

ordered for the natural IS200 transposon ISSpn6 and the natural IS605 transposon ISHp608.

IS200/IS605 TnpA protein preparation

TnpA and TnpA-mutant eBlocks were PCR amplified using NEBNext 2xPCR mastermix

(New England Biolabs) for 35 cycles using an annealing temperature of 65°C and

an elongation time of 15 s in 50 µL reactions with primers PURExpress_T7_F and

PURExpress_T7_F (sequences provided in data S1), column purified using a QIAQuick

PCR purification kit (Qiagen), and diluted to 30 ng/µL. In vitro transcription-translation

reactions were performed using PURExpress (New England Biolabs) in 27 µL reactions

containing 10 µL solution A, 7.5 µL solution B, 1 µL of Murine RNAse Inhibitor (NEB), and

8.5 ul (255 ng) of template DNA. DHFR expression plasmid provided with the PURExpress

kit was used as template DNA for reactions lacking TnpA protein. Reactions were incubated

for 3 hours at 37°C and directly transferred to in vitro reactions.

Nguyen et al. Page 32

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

IS200/IS605 substrate DNA preparation

Substrate eBlocks were PCR amplified using NEBNext 2xPCR master mix (NEB) for 35

cycles using an annealing temperature of 65°C and an elongation time of 15 s in 100 µL

reactions with a forward primer containing 3 PTOs and a reverse primer containing a 5′
phosphate (ssDNA_substrate_PTO_F and ssDNA_substrate_5phos_R; sequences provided

in data S1), column purified using QIAprep Spin Miniprep Columns (Qiagen), and eluted

in 45 µL water. The Guide-it Long ssDNA Production System v2 (Takara Bio) was used to

generate substrate ssDNA in 50 µL reactions with 30 µL purified PCR product following the

manufacturer’s conditions with an incubation time of 10 min at 37°C and 5 min at 80°C with

Strandase A, and 5 min at 37°C and 5 min at 80°C with Strandase B. The resulting ssDNA

substrates were then column purified using a NucleoSpin Gel and PCR Clean-Up kit (Takara

Bio) by diluting the reaction to 100 µL total volume, adding 200 µL buffer NTC (Takara

Bio), mixing thoroughly before adding to the column, and washing with 600 µL buffer NT3

before eluting in 30 µL elution buffer. Resulting ssDNA products were diluted to 20 ng/µL

as quantified using a NanoDrop One in ssDNA mode (ThermoScientific).

Substrate PCR products for use in the in vitro assay as dsDNA were further treated with

exonuclease I (E. coli, New England Biolabs) to remove residual PCR primers or other

ssDNA in 20 µL reactions containing 600 ng PCR product, 2 µL 10x exonuclease I buffer,

and 5 µL of exonuclease I. After column purification using a QIAQuick PCR purification kit

(Qiagen), the resulting dsDNA substrate was diluted to 20 ng/µL.

IS200/IS605 in vitro TnpA excision/insertion assays

In vitro transposition reactions were performed by incubating 10 µL PURExpress product

with 10 µL (200 ng) of ssDNA or dsDNA substrate for 2 hours at 37°C. Reactions were

treated with 1 µL RNase A (20 mg/mL, New England Biolabs) for 5 min at 37°C and 10

µL Proteinase K (8 units, New England Biolabs) for 15 min at 37°C. Resulting ssDNA

products were then column purified using a NucleoSpin Gel and PCR Clean-Up kit (Takara

Bio) by diluting the reaction to 100 µL total volume, adding 200 µL buffer NTC (Takara

Bio), mixing thoroughly before adding to the column, and washing with 600 µL buffer

NT3 before eluting in 30 µL elution buffer. PCRs were then performed in 50 µL reactions

for 35 cycles using an annealing temperature of 65°C and an elongation time of 20 s

using 4 µL eluate, NEBNext 2x PCR master mix (New England Biolabs) and primers

FillerOut_F and FillerOut_R for ISStin10-like, ISSpn6-like, and ISDge10-like candidates

and using primers ISHp608-like_FillerOut_F and FillerOut_R for ISHp608-like candidates

(sequences are provided in data S1). PCR products were column-purified using a QIAquick

PCR Purification kit (Qiagen) and run on either a 2% E-Gel EX agarose gel pre-stained

with SYBR Gold or on a 48-well 2% E-Gel agarose gel pre-stained with SYBR Safe

(ThermoScientific).

IS200/IS605 nanopore sequencing analysis of PCR products

PCR products from TnpA reactions were submitted for nanopore sequencing via the

Premium PCR sequencing service from Plasmidsaurus (2 samples per condition), which

uses the ligation sequencing kit v14 (Oxford Nanopore Technologies) and R10.4.1 flow cells

(Oxford Nanopore Technologies). Reads were then processed by filtering for the expected

Nguyen et al. Page 33

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

read structure (FillerOut_F/ISHp608-like_FillerOut_F followed by sequence followed by

FillerOut_R reverse complemented or FillerOut_R followed by sequence followed by

FillerOut_F/ISHp608-like_FillerOut_F reverse complemented), by looking for expected

primer sequences in the 30 bp on either end, allowing for up to four errors (sequences are

provided in data S1). Reads passing this filtering were then mapped to the relevant substrate

sequence by sliding a window across the sequence, splitting each window into a left and

right half, and matching each half to the substrate sequence, requiring a perfect match for

both sides. The window was twice the minimum length i required for all substrings of length

i from the substrate sequence to be unique. Each match was then added to a jump map

matrix for each condition at the position corresponding to the right-most base of the left side

match and the left-most base of the right-side match (fig. S22A). Transposon boundaries and

hairpins were annotated based on these jump maps and additional manual processing and

inspection of reads and alignments via Geneious Prime 2024 (https://www.geneious.com).

Gene essentiality prediction

We obtained binary genome-wide essentiality results for 56 bacterial genomes from the

DEG database (73) in which coding genes are labeled with “essential” or “nonessential”

binary labels. We also obtained genome-wide essentiality results for two phage genomes,

lambda and P1, from Piya et al. (74) and used the binary labels assigned by the study authors

based on the results of their CRISPRi screen.

To perform the in silico gene essentiality screen, we obtained the whole bacterial genome

using the RefSeq IDs provided by DEG. We used RefSeq: NC_001416 as the reference

genome for lambda phage and RefSeq: NC_005856 as the reference genome for P1 phage.

We iterated over all genes annotated as protein coding and computed a score with a

nucleotide language model for each gene. To compute the score, we provided the language

model with different levels of context: (i) the sequence of the gene only, (ii) the sequence

of the gene plus equally distributed context on both sides of the gene up to a total 8192

bp, or (iii) the sequence of the gene plus equally distributed context on both sides of the

gene up to a total 65,536 bp. If a gene extended beyond 8192 bp, we used the first 8192 bp

of the gene sequences. We computed the score as the difference in log-likelihoods between

a mutated sequence and the unmutated wild-type sequence. To mutate the sequence, we

inserted multiple stop codons “TAATAATAA-TAGTGA” at an offset of 12 nucleotides into

the sequence; for the 8192 and 65,536 bp context settings, we add context to both sides

of the gene after the insertion. Additionally, for the 8192 bp setting, we tested three other

strategies: (i) inserting a single stop codon “TAA” 12 nucleotides into the sequence, (ii)

deleting the entire gene sequence (after which we provided 8192 context centered on the

deleted gene) (fig. S27), or (iii) inserting stop codons tiled across the coding sequence at

an interval of every 20 codons (or 60 bp) beginning with the first codon. As an additional

control, we also used the gene’s linear position in the reference genome as the value with

which to predict essentiality. If a model were simply using positional information to make

essentiality predictions, the performance would be similar to this control.

We also used the conservation of a gene as another control. To estimate conservation,

we extracted all protein sequences from the OpenGenome dataset. For each genome

Nguyen et al. Page 34

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.geneious.com/

corresponding to each essentiality study, we performed an all-by-all sequence search

between all of the protein sequences in the genome-of-interest and all of the proteins in

OpenGenome. To do this reasonably efficiently, we used mmseqs easy-search with default

parameters, where the protein sequences in the genome-of-interest constituted the query

sequences and the OpenGenome protein sequences constituted the target sequences. To

compute the conservation of each gene, we counted the number of significant hits identified

by mmseqs under a nominal E value threshold of 1 × 10−2. We assumed that a greater

number of hits corresponds to higher conservation, which in turn corresponds to greater

essentiality.

We used the change in log-likelihoods (or the control “scores”) to predict the binary gene

essentiality labels and compute the strength of the prediction with the AUROC score and the

average precision score as implemented in scikit-learn. We assessed statistical significance

of the AUROC with a permutation-based method in which a null distribution is constructed

by permuting the binary labels and recomputing the subsequent AUROC. We performed

100,000 permutations to construct this null distribution.

Genome-scale generation and evaluation

We used Evo pretrained at 131k context to sample sixteen sequences of lengths ~1 Mb. We

sampled witha temperature of 1.0 anda top-k value of 4 following a standard autoregressive

sampling procedure (139). We prompted the model with four species-specific prompts:

1. |d_Bacteria;p_Tenericutes;c_Mollicutes; o_Mycoplasmatales;

f_Mycoplasmataceae; g_Mycoplasma;s_Mycoplasma genitalium||

2. |d_Bacteria;p_Bacillota;c_Bacilli;o_Staphylococcales;f_Staphylococcaceae;

g_Staphylococcus;s_Staphylococcus aureus||

3. |d_Bacteria;p_Pseudomonadota;c_Gammaproteobacteria;o_Enterobacterales;

f_Enterobacteriaceae;g_Klebsiella;s_Klebsiella pneumoniae||

4. |d_Bacteria;p_Pseudomonadota;c_Gammaproteobacteria;o_Enterobacterales;

f_Enterobacteriaceae;g_Escherichia;s_Escherichia||

These prompts correspond to the species Mycoplasma genitalium, Staphylococcus aureus,

Klebsiella pneumoniae, and E. coli, respectively, and follow Greengenes-style lineage

strings, which concatenate all taxa starting with the most ancestral and ending with the

most current, separated by semicolons. A single character prefix is also added to each

taxon indicating its rank. These lineages strings were prepended to each contig during the

131k-context-extension phase of pretraining. We sampled four sequences for each prompt,

leading to a total of sixteen sequences.

We evaluated these generations with CheckM (77), a tool that computes basic genome

quality metrics based on whether a given long DNA sequence has similar properties as

known bacterial genomes. CheckM uses Prodigal (140) to identify coding sequences and

computes the coding density as one metric of genome quality. CheckM will also search for

the presence of genes that are highly conserved across much of prokaryotic diversity. We

divided all of our generations into discrete segments of up to 131,072 bp and computed

Nguyen et al. Page 35

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the distribution of CheckM coding densities across these crops. As a positive control,

we randomly selected 100 bacterial genomes from GTDB and used CheckM to compute

the coding densities for 131,072 bp crops from these genomes. As a negative control,

we generated 1000 sequences of length 131,072 in which the four DNA base pairs were

sampled uniformly at random. We then used CheckM to compute the coding densities on

this random sequence. We also used tRNAscan-SE to search for tRNA sequences in our

generated sequences and we used barrnap to search for rRNA sequences.

We used ESMFold to obtain atomic-level structure predictions for all of the Prodigal-defined

coding sequences in each of our generations. We limited ESMFold structure predictions

to coding sequences between 100 and 1024 amino acids, inclusive. We computed the

mean backbone pLDDT for all predicted structures. We used the biotite Python package

to compute the percentages of secondary structure elements for all predicted structures. We

used FoldSeek easy-search to perform efficient TM-based alignment (- -alignment-type 1),

and all other parameters set to their default values, to perform an all-by-all structural search

between ESMFold structures corresponding to Evo-generated sequences and the structure

predictions for UniRef50 provided in the AlphaFold Protein Structure Database (https://

alphafold.ebi.ac.uk/). Structure alignments were scored as the average of the query TMscore

and the target TMscore, where a score greater than 0.4 was considered a structural match.

We used these structural matches, along with GO terms assigned to UniRef50 clusters,

to infer GO terms for the Evo-generated proteins as well. We used PyMOL to visualize

protein structures corresponding to the five GO “molecular function” terms with the most

representation among the Evo generated proteins.

We evaluated genomic sequence patterns including tetranucleotide and stop codon

frequencies. Tetranucleotide usage deviations (TUDs) were calculated as previously

described (78). TUD phylogenies were generated by hierarchical clustering using a distance

matrix constructed from the Euclidean distances of log2transformed TUDs for each genome.

Stop codon frequencies in the three reading frames of Prodigal-identified ORFs were stored

as vectors consisting of nine scalar counts. Percentages of stop codons were calculated as

the total sum of each stop codon (TAA, TAG, or TGA) relative to the total sum of all stop

codons in a given vector. Stop codon ratios were calculated as the relative proportions of all

nine scalars in a given vector.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We thank E. Chanakira, D. Driggers, R. Dugan, H. Fritz, M. Iskender, A. Jain, M. LaPan, S. Marrs, S. Perelson,
R. Rizun, J. Rojas, and D. Ugelstad for assistance with computational infrastructure. We thank S. Sternberg and C.
Meers for providing covariance models to identify diverse wRNAs. We thank M. White for contributing purification
plasmids. We thank J. Adkins, J. Carvalho, D. Fu, J. Dunnmon, Y. Hwang, J. Kazaks, G. Machiraju, A. Merchant,
A. Patel, A. Pawluk, C. Ricci-Tam, C. Theodoris, B. Viggiano, and A. Woodrow for helpful discussions and
assistance with manuscript preparation.

Nguyen et al. Page 36

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://alphafold.ebi.ac.uk/
https://alphafold.ebi.ac.uk/

Funding:

This work was supported by the Fannie and John Hertz Foundation (D.B.L.); National Science Foundation
Graduate Fellowship Program (S.H.K. and G.B.); National Center for Advancing Translational Sciences of
the National Institutes of Health, award no. UL1TR003142 (T.H.-B.); National Institutes of Health grant
U54EB020405 (C.R.); National Science Foundation grants CCF2247015, CCF1763315, CCF1563078, and
1937301 (C.R.); US DEVCOM Army Research Laboratory grants W911NF-23-2-0184 and W911NF-21-2-0251
(C.R.); ONR grant N000142312633 (C.R.); Stanford HAI grant 247183 (C.R.); NXP, Xilinx, LETI-CEA, Intel,
IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm, Analog Devices,
Google Cloud, Salesforce, Total, the HAI-GCP Cloud Credits for Research program, the Stanford Data Science
Initiative (SDSI), and members of the Stanford DAWN project: Meta, Google, and VMWare (C.R.); the Arc
Institute (P.D.H. and B.L.H.); the Rainwater Foundation (P.D.H.); the Curci Foundation (P.D.H.); Rose Hill
Investigators Program (P.D.H.); V. and N. Khosla (P.D.H.); S. Altman (P.D.H.); anonymous gifts to the Hsu
laboratory (P.D.H.); V. Gupta (B.L.H.); and R. Tonsing (B.L.H.).

M.P. carried out the work during employment at Together AI. M.G.D. acknowledges outside interest in Stylus
Medicine. D.K. acknowledges outside interest in Shape Therapeutics. C.R. acknowledges outside interest in
Factory and Google Ventures. P.D.H. acknowledges outside interest as a cofounder of Stylus Medicine, Circle
Labs, and Spotlight Therapeutics; serves on the board of directors at Stylus Medicine; is a board observer
at EvolutionaryScale, Circle Labs, and Spotlight Therapeutics; is a scientific advisory board member at Arbor
Biosciences and Veda Bio; and is an advisor to NFDG, Varda Space, and Vial Health. B.L.H. acknowledges
outside interest in Prox Biosciences as a scientific cofounder. B.L.H., P.D.H., B.K., D.K., and L.J.B. are named as
inventors on provisional patent application 63/688,826 applied for by Stanford University and Arc Institute related
to EvoCas9-1.

Data and materials availability:

Code and models related to this study are publicly available at https://github.com/evo-

design/evo and uploaded to Zenodo (153). The following models have been uploaded

to Hugging Face under an open-source license: pretrained Evo model with 8k context

(https://huggingface.co/togethercomputer/evo-1-8k-base); pretrained Evo model with 131k

context (https://huggingface.co/togethercomputer/evo-1-131k-base); fine-tuned Evo model

on CRISPR-Cas systems (https://huggingface.co/LongSafari/evo-1-8k-crispr); and fine-

tuned Evo model on IS200/IS605 systems (https://huggingface.co/LongSafari/evo-1-8k-

transposon). The OpenGenome dataset, including training, validation, and test splits, is

publicly available on Hugging Face Datasets at https://huggingface.co/datasets/LongSafari/

open-genome. We used the following publicly available datasets for pretraining: bacterial

and archaeal genomes from the Genome Taxonomy Database (GTDB) v214.1 (35); curated

prokaryotic viruses from the IMG/VR v4 database (36); and plasmid sequences from the

IMG/PR database (37). In addition to the above datasets, we also used portions of the

following datasets for fine-tuning: NCBI RefSeq (102), UHGG (103), JGI IMG (104), The

Gut Phage Database (105), The Human Gastrointestinal Bacteria Genome Collection (106),

MGnify (107), Animal gut metagenomes (108), MGRAST (109), and Tara Oceans samples

(110). Additional details on these datasets are provided in Materials and methods. DNA,

RNA, and protein sequences generated during our validation experiments are available

in data S1. All newly created materials are available upon reasonable request to the

corresponding authors.

REFERENCES AND NOTES

1. Morgan TH, Sex limited inheritance in Drosophila. Science 32, 120–122 (1910). doi: 10.1126/
science.32.812.120 [PubMed: 17759620]

2. Watson JD, Crick FHC, Molecular structure of nucleic acids: A structure for deoxyribose nucleic
acid. Nature 171, 737–738 (1953). doi: 10.1038/171737a0 [PubMed: 13054692]

Nguyen et al. Page 37

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/evo-design/evo
https://github.com/evo-design/evo
https://huggingface.co/togethercomputer/evo-1-8k-base
https://huggingface.co/togethercomputer/evo-1-131k-base
https://huggingface.co/LongSafari/evo-1-8k-crispr
https://huggingface.co/LongSafari/evo-1-8k-transposon
https://huggingface.co/LongSafari/evo-1-8k-transposon
https://huggingface.co/datasets/LongSafari/open-genome
https://huggingface.co/datasets/LongSafari/open-genome

3. Nirenberg MW, Matthaei JH, The dependence of cell-free protein synthesis in E. coli upon naturally
occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci. U.S.A. 47, 1588–1602 (1961).
doi: 10.1073/pnas.47.10.1588 [PubMed: 14479932]

4. Dobzhansky T, Genetics and the Origin of Species (Columbia Univ. Press, 1951).

5. Jumper J. et al. , Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589
(2021). doi: 10.1038/s41586-021-03819-2 [PubMed: 34265844]

6. Rives A. et al. , Biological structure and function emerge from scaling unsupervised learning to 250
million protein sequences. Proc. Natl. Acad. Sci. U.S.A 118, e2016239118 (2021). doi: 10.1073/
pnas.2016239118

7. Outeiral C, Deane CM, Codon language embeddings provide strong signals for use in protein
engineering. Nat. Mach. Intell 6, 170–179 (2024). doi: 10.1038/s42256-024-00791-0

8. Li S. et al. , CodonBERT large language model for mRNA vaccines. Genome Res. 34, 1027–1035
(2024). doi: 10.1101/gr.278870.123 [PubMed: 38951026]

9. Avsec Ž et al. , Effective gene expression prediction from sequence by integrating long-range
interactions. Nat. Methods 18, 1196–1203 (2021). doi: 10.1038/s41592-021-01252-x [PubMed:
34608324]

10. Watson JL et al. , De novo design of protein structure and function with RFdiffusion. Nature 620,
1089–1100 (2023). doi: 10.1038/s41586-023-06415-8 [PubMed: 37433327]

11. Madani A. et al. , Large language models generate functional protein sequences across diverse
families. Nat. Biotechnol 41, 1099–1106 (2023). doi: 10.1038/s41587-022-01618-2 [PubMed:
36702895]

12. Ingraham JB et al. , Illuminating protein space with a programmable generative model. Nature 623,
1070–1078 (2023). doi: 10.1038/s41586-023-06728-8 [PubMed: 37968394]

13. DaSilva LF et al. , DNA-Diffusion: Leveraging Generative Models for Controlling
Chromatin Accessibility and Gene Expression via Synthetic Regulatory Elements. bioRxiv
2024.02.01.578352 [Preprint] (2024); 10.1101/2024.02.01.578352.

14. Lal A, Garfield D, Biancalani T, Eraslan G, regLM: Designing realistic regulatory
DNA with autoregressive language models. bioRxiv 2024.02.14.580373 [Preprint] (2024);
10.1101/2024.02.14.580373.

15. Zvyagin M et al. ., GenSLMs: Genome-scale language models reveal SARS-CoV-2
evolutionary dynamics. Int. J. High Perform. Comput. Appl 37, 683–705 (2023). doi:
10.1177/10943420231201154

16. Dalla-Torre H. et al. , The Nucleotide Transformer: Building and Evaluating Robust
Foundation Models for Human Genomics. bioRxiv 2023.01.11.523679 [Preprint] (2023);
10.1101/2023.01.11.523679.

17. Zhou Z, Ji Y, Li W, Dutta P, Davuluri R, Liu H, DNABERT-2: Efficient foundation model and
benchmark for multi-species genome. arXiv:2306.15006 [q-bio.GN] (2023).

18. Tay Y. et al. , Charformer: Fast Character Transformers via Gradient-based Subword Tokenization.
arXiv:2106.12672 [cs.CL] (2022).

19. Chen S, Wong S, Chen L, Tian Y, Extending context window of large language models via
positional interpolation. arXiv:2306.15595 [cs.CL] (2023).

20. Liu H, Zaharia M, Abbeel P, Ring attention with blockwise transformers for near-infinite context.
arXiv:2310.01889 [cs.CL] (2023).

21. Fishman V. et al. , GENA-LM: A family of open-source foundational DNA language models for
long sequences. bioRxiv 2023.06.12.544594 [Preprint] (2024); 10.1101/2023.06.12.544594.

22. Ji Y, Zhou Z, Liu H, Davuluri RV, DNABERT: Pre-trained Bidirectional Encoder Representations
from Transformers model for DNA-language in genome. Bioinformatics 37, 2112–2120 (2021).
doi: 10.1093/bioinformatics/btab083 [PubMed: 33538820]

23. Hwang Y, Cornman AL, Kellogg EH, Ovchinnikov S, Girguis PR, Genomic language model
predicts protein co-regulation and function. Nat. Commun 15, 2880 (2024). doi: 10.1038/
s41467-024-46947-9 [PubMed: 38570504]

24. Poli M. et al. , StripedHyena: Moving Beyond Transformers with Hybrid Signal Processing
Models, GitHub (2023); https://github.com/togethercomputer/stripedhyena.

Nguyen et al. Page 38

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

25. Li Z. et al. , Fourier neural operator for parametric partial differential equations. arXiv:2010.08895
[cs.LG] (2021).

26. Gu A, Goel K, Ré C, Efficiently modeling long sequences with structured state spaces.
arXiv:2111.00396 [cs.LG] (2022).

27. Orvieto A. et al. , Resurrecting Recurrent Neural Networks for Long Sequences. arXiv:2303.06349
[cs.LG] (2023).

28. Massaroli S. et al., “Laughing Hyena Distillery: Extracting Compact Recurrences From
Convolutions” in Advances in Neural Information Processing Systems, vol. 36, Oh A. et al., Eds.
(Curran Associates, Inc., 2023), pp. 17072–17116.

29. Su J. et al. , RoFormer: Enhanced transformer with rotary position embedding. Neurocomputing
568, 127063 (2024). doi: 10.1016/j.neucom.2023.127063

30. Ma X. et al. , Mega: Moving average equipped gated attention. arXiv:2209.10655 [cs.LG] (2023).

31. Fu DY et al. , Hungry hungry hippos: Towards language modeling with state space models.
arXiv:2212.14052 [cs.LG] (2023).

32. Pilault J. et al., “Block-state transformers” in Advances in Neural Information Processing Systems,
vol. 36, Oh A. et al., Eds. (Curran Associates, Inc., 2023), pp. 7311–7329.

33. Nguyen E. et al., “HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide
Resolution” in Advances in Neural Information Processing Systems, vol. 36, Oh A. et al., Eds.
(Curran Associates, Inc., 2023), pp. 43177–43201.

34. Poli M. et al. , Hyena Hierarchy: Towards Larger Convolutional Language Models.
arXiv:2302.10866 [cs.LG] (2023).

35. Parks DH et al. , GTDB: An ongoing census of bacterial and archaeal diversity through a
phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic
Acids Res. 50, D785–D794 (2022). doi: 10.1093/nar/gkab776 [PubMed: 34520557]

36. Camargo AP et al. , IMG/VR v4: An expanded database of uncultivated virus genomes within a
framework of extensive functional, taxonomic, and ecological metadata. Nucleic Acids Res. 51,
D733–D743 (2023). doi: 10.1093/nar/gkac1037 [PubMed: 36399502]

37. Camargo AP et al. , IMG/PR: A database of plasmids from genomes and metagenomes with rich
annotations and metadata. Nucleic Acids Res. 52, D164–D173 (2024). doi: 10.1093/nar/gkad964
[PubMed: 37930866]

38. Hoffmann J. et al. , Training Compute-Optimal Large Language Models. arXiv:2203.15556
[cs.CL] (2022).

39. Kaplan J. et al. , Scaling Laws for Neural Language Models. arXiv:2001.08361 [cs.LG] (2020).

40. Gu A, Dao T, Mamba: Linear-time sequence modeling with selective state spaces.
arXiv:2312.00752 [cs.LG] (2024).

41. Meier J. et al., “Language models enable zero-shot prediction of the effects of mutations on
protein function” in Advances in Neural Information Processing Systems, vol. 34, Ranzato M,
Beygelzimer A, Dauphin Y, Liang PS, Wortman Vaughan J, Eds. (Curran Associates, Inc., 2021),
pp. 29287–29303.

42. Notin P. et al., “Tranception: Protein Fitness Prediction with Autoregressive Transformers and
Inference-time Retrieval” in Proceedings of the 39th International Conference on Machine
Learning, vol. 162, Chaudhuri K. et al., Eds. (PMLR, 2022), pp. 16990–17017.

43. Benegas G, Albors C, Aw AJ, Ye C, Song YS, GPN-MSA: an alignment-based DNA language
model for genome-wide variant effect prediction. bioRxiv 2023.10.10.561776 [Preprint] (2024);
10.1101/2023.10.10.561776.

44. Notin P. et al. , ProteinGym: Large-Scale Benchmarks for Protein Design and Fitness Prediction.
bioRxiv 2023.12.07.570727 [Preprint] (2023); 10.1101/2023.12.07.570727.

45. Livesey BJ, Marsh JA, Updated benchmarking of variant effect predictors using deep mutational
scanning. Mol. Syst. Biol 19, e11474 (2023). doi: 10.15252/msb.202211474

46. Yang KK, Fusi N, Lu AX, Convolutions are competitive with transformers for protein
sequence pretraining. Cell Syst. 15, 286–294.e2 (2024). doi: 10.1016/j.cels.2024.01.008 [PubMed:
38428432]

Nguyen et al. Page 39

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

47. Lin Z. et al. , Evolutionary-scale prediction of atomic-level protein structure with a language
model. Science 379, 1123–1130 (2023). doi: 10.1126/science.ade2574 [PubMed: 36927031]

48. Nijkamp E, Ruffolo JA, Weinstein EN, Naik N, Madani A, ProGen2: Exploring the boundaries
of protein language models. Cell Syst. 14, 968–978.e3 (2023). doi: 10.1016/j.cels.2023.10.002
[PubMed: 37909046]

49. Li F-Z, Amini AP, Yue Y, Yang KK, Lu AX, Feature Reuse and Scaling: Understanding
Transfer Learning with Protein Language Models. bioRxiv 2024.02.05.578959 [Preprint] (2024);
10.1101/2024.02.05.578959.

50. Chen J. et al. , Interpretable RNA foundation model from unannotated data for highly accurate
RNA structure and function predictions. arXiv:2204.00300 [q-bio.QM] (2022).

51. Zhang ZD, Nayar M, Ammons D, Rampersad J, Fox GE, Rapid in vivo exploration of a 5S rRNA
neutral network. J. Microbiol. Methods 76, 181–187 (2009). doi: 10.1016/j.mimet.2008.10.010
[PubMed: 19041908]

52. LaFleur TL, Hossain A, Salis HM, Automated model-predictive design of synthetic promoters
to control transcriptional profiles in bacteria. Nat. Commun 13, 5159 (2022). doi: 10.1038/
s41467-022-32829-5 [PubMed: 36056029]

53. Urtecho G, Tripp AD, Insigne KD, Kim H, Kosuri S, Systematic dissection of sequence
elements controlling s70 promoters using a genomically encoded multiplexed reporter assay
in Escherichia coli. Biochemistry 58, 1539–1551 (2018). doi: 10.1021/acs.biochem.7b01069
[PubMed: 29388765]

54. Hossain A. et al. , Automated design of thousands of nonrepetitive parts for engineering
stable genetic systems. Nat. Biotechnol 38, 1466–1475 (2020). doi: 10.1038/s41587-020-0584-2
[PubMed: 32661437]

55. Yu TC et al. , Multiplexed characterization of rationally designed promoter architectures
deconstructs combinatorial logic for IPTG-inducible systems. Nat. Commun 12, 325 (2021). doi:
10.1038/s41467-020-20094-3 [PubMed: 33436562]

56. Kosuri S. et al. , Composability of regulatory sequences controlling transcription and translation
in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A 110, 14024–14029 (2013). doi: 10.1073/
pnas.1301301110 [PubMed: 23924614]

57. Salis HM, Mirsky EA, Voigt CA, Automated design of synthetic ribosome binding sites to
control protein expression. Nat. Biotechnol 27, 946–950 (2009). doi: 10.1038/nbt.1568 [PubMed:
19801975]

58. Reis AC, Salis HM, An automated model test system for systematic development and
improvement of gene expression models. ACS Synth. Biol 9, 3145–3156 (2020). doi: 10.1021/
acssynbio.0c00394 [PubMed: 33054181]

59. Wang JY, Pausch P, Doudna JA, Structural biology of CRISPR–Cas immunity and genome editing
enzymes. Nat. Rev. Microbiol 20, 641–656 (2022). doi: 10.1038/s41579-022-00739-4 [PubMed:
35562427]

60. Hsu PD, Lander ES, Zhang F, Development and applications of CRISPR-Cas9 for genome
engineering. Cell 157, 1262–1278 (2014). doi: 10.1016/j.cell.2014.05.010 [PubMed: 24906146]

61. Koonin EV, Makarova KS, Origins and evolution of CRISPR-Cas systems. Phil. Trans. R. Soc. B
374, 20180087 (2019). doi: 10.1098/rstb.2018.0087

62. Jinek M. et al. , A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial
immunity. Science 337, 816–821 (2012). doi: 10.1126/science.1225829 [PubMed: 22745249]

63. Hsu PD et al. , DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol 31,
827–832 (2013). doi: 10.1038/nbt.2647 [PubMed: 23873081]

64. Abramson J. et al. , Accurate structure prediction of biomolecular interactions with AlphaFold 3.
Nature 630, 493–500 (2024). doi: 10.1038/s41586-024-07487-w [PubMed: 38718835]

65. Craig NL et al., Eds., Mobile DNA III (Wiley, ed. 3, 2020).

66. Meers C. et al. , Transposon-encoded nucleases use guide RNAs to promote their selfish spread.
Nature 622, 863–871 (2023). doi: 10.1038/s41586-023-06597-1 [PubMed: 37758954]

67. Karvelis T. et al. , Transposon-associated TnpB is a programmable RNA-guided DNA
endonuclease. Nature 599, 692–696 (2021). doi: 10.1038/s41586-021-04058-1 [PubMed:
34619744]

Nguyen et al. Page 40

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

68. Altae-Tran H. et al. , The widespread IS200/IS605 transposon family encodes diverse
programmable RNA-guided endonucleases. Science 374, 57–65 (2021). doi: 10.1126/
science.abj6856 [PubMed: 34591643]

69. Barabas O. et al. , Mechanism of IS200/IS605 family DNA transposases: Activation
and transposon-directed target site selection. Cell 132, 208–220 (2008). doi: 10.1016/
j.cell.2007.12.029 [PubMed: 18243097]

70. Zhang Z. et al. , Protein language models learn evolutionary statistics of interacting sequence
motifs. Proc. Natl. Acad. Sci. U.S.A 121, e2406285121 (2024). doi: 10.1073/pnas.2406285121

71. Siguier P, Pérochon J, Lestrade L, Mahillon J, Chandler M, ISfinder: The reference centre for
bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36 (2006). doi: 10.1093/nar/gkj014
[PubMed: 16381877]

72. Rocha EPC, Danchin A, Gene essentiality determines chromosome organisation in bacteria.
Nucleic Acids Res. 31, 6570–6577 (2003). doi: 10.1093/nar/gkg859 [PubMed: 14602916]

73. Zhang R, Ou H‐Y, Zhang C‐T, DEG: A database of essential genes. Nucleic Acids Res. 32,
D271–D272 (2004). doi: 10.1093/nar/gkh024 [PubMed: 14681410]

74. Piya D. et al. , Systematic and scalable genome-wide essentiality mapping to identify nonessential
genes in phages. PLOS Biol. 21, e3002416 (2023). doi: 10.1371/journal.pbio.3002416

75. Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M, Essential genome of Pseudomonas
aeruginosa in cystic fibrosis sputum. Proc. Natl. Acad. Sci. U.S.A 112, 4110–4115 (2015). doi:
10.1073/pnas.1419677112 [PubMed: 25775563]

76. Blanchard A, Bébéar C, The evolution of Mycoplasma genitalium. Ann. N. Y. Acad. Sci 1230,
E61–E64 (2011). doi: 10.1111/j.1749-6632.2011.06418.x [PubMed: 22417108]

77. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW, CheckM: Assessing the quality
of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25,
1043–1055 (2015). doi: 10.1101/gr.186072.114 [PubMed: 25977477]

78. Pride DT, Meinersmann RJ, Wassenaar TM, Blaser MJ, Evolutionary implications of microbial
genome tetranucleotide frequency biases. Genome Res. 13, 145–158 (2003). doi: 10.1101/
gr.335003 [PubMed: 12566393]

79. Xu L, Kuo J, Liu J-K, Wong T-Y, Bacterial phylogenetic tree construction based on genomic
translation stop signals. Microb. Inform. Exp 2, 6 (2012). doi: 10.1186/2042-5783-2-6 [PubMed:
22651236]

80. Korkmaz G, Holm M, Wiens T, Sanyal S, Comprehensive analysis of stop codon usage in bacteria
and its correlation with release factor abundance. J. Biol. Chem 289, 30334–30342 (2014). doi:
10.1074/jbc.M114.606632 [PubMed: 25217634]

81. Seemann T, barrnap, GitHub (2018); https://github.com/tseemann/barrnap.

82. Goldman N, Thorne JL, Jones DT, Assessing the impact of secondary structure and solvent
accessibility on protein evolution. Genetics 149, 445–458 (1998). doi: 10.1093/genetics/149.1.445
[PubMed: 9584116]

83. Wei J. et al. , Finetuned language models are zero-shot learners. arXiv:2109.01652 [cs.CL] (2022).

84. Ouyang L. et al. , Training language models to follow instructions with human feedback.
arXiv:2203.02155 [cs.CL] (2022).

85. Rafailov R. et al., “Direct Preference Optimization: Your Language Model is Secretly a Reward
Model” in Advances in Neural Information Processing Systems, vol. 36, Oh A. et al., Eds. (Curran
Associates, Inc., 2023), pp. 53728–53741.

86. Rehm HL et al. , GA4GH: International policies and standards for data sharing across genomic
research and healthcare. Cell Genomics 1, 100029 (2021). doi: 10.1016/j.xgen.2021.100029

87. Kojima T, Gu SS, Reid M, Matsuo Y, Iwasawa Y, “Large Language Models are Zero-Shot
Reasoners” in Advances in Neural Information Processing Systems, vol. 35, Koyejo S. et al., Eds.
(Curran Associates, Inc., 2022), pp. 22199–22213.

88. Hie BL et al. , Efficient evolution of human antibodies from general protein language models. Nat.
Biotechnol 42, 275–283 (2024). doi: 10.1038/s41587-023-01763-2 [PubMed: 37095349]

89. Shanker VR, Bruun TUJ, Hie BL, Kim PS, Unsupervised evolution of protein and antibody
complexes with a structure-informed language model. Science 385, 46–53 (2024). doi: 10.1126/
science.adk8946 [PubMed: 38963838]

Nguyen et al. Page 41

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

90. Durrant MG et al. , Bridge RNAs direct programmable recombination of target and donor DNA.
Nature 630, 984–993 (2024). doi: 10.1038/s41586-024-07552-4 [PubMed: 38926615]

91. Dauphin YN, Fan A, Auli M, Grangier D, “Language Modeling with Gated Convolutional
Networks” in Proceedings of the 34th International Conference on Machine Learning, vol. 70,
Precup D, Teh YW, Eds. (PMLR, 2017), pp. 933–941.

92. Shazeer N, GLU variants improve Transformer. arXiv:2002.05202 [cs.LG] (2020).

93. Zhang B, Sennrich R, “Root Mean Square Layer Normalization” in Advances in Neural
Information Processing Systems, vol. 32, Wallach H. et al., Eds. (Curran Associates, Inc., 2019).

94. Fu D. et al., “Monarch Mixer: A simple sub-quadratic GEMM-based architecture” in Advances in
Neural Information Processing Systems, vol. 36, Oh A. et al., Eds. (Curran Associates, Inc., 2023),
pp. 77546–77603.

95. Arora S. et al. , Zoology: Measuring and improving recall in efficient language models.
arXiv:2312.04927 [cs.CL] (2023).

96. Bhattamishra S, Patel A, Blunsom P, Kanade V, Understanding in-context learning in transformers
and LLMs by learning to learn discrete functions. arXiv:2310.03016 [cs.LG] (2023).

97. Romero DW, Kuzina A, Bekkers EJ, Tomczak JM, Hoogendoorn M, CKConv: Continuous kernel
convolution for sequential data. arXiv:2102.02611 [cs.LG] (2022).

98. Gupta A, Gu A, Berant J, “Diagonal State Spaces are as Effective as Structured State Spaces”
in Advances in Neural Information Processing Systems, vol. 35, Koyejo S. et al., Eds. (Curran
Associates, Inc., 2022), pp. 22982–22994.

99. Gu A, Goel K, Gupta A, Ré C, “On the Parameterization and Initialization of Diagonal State Space
Models” in Advances in Neural Information Processing Systems, vol. 35, Koyejo S. et al., Eds.
(Curran Associates, Inc., 2022), pp. 35971–35983.

100. Zhang M. et al. , Effectively modeling time series with simple discrete state spaces.
arXiv:2303.09489 [cs.LG] (2023).

101. Wei J. et al. , Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA
targeting. Cell Syst. 14, 1087–1102.e13 (2023). doi: 10.1016/j.cels.2023.11.006 [PubMed:
38091991]

102. O’Leary NA et al. , Reference sequence (RefSeq) database at NCBI: Current status, taxonomic
expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016). doi:
10.1093/nar/gkv1189 [PubMed: 26553804]

103. Almeida A. et al. , A unified catalog of 204,938 reference genomes from the human gut
microbiome. Nat. Biotechnol 39, 105–114 (2021). doi: 10.1038/s41587-020-0603-3 [PubMed:
32690973]

104. Chen I-MA et al. , The IMG/M data management and analysis system v.6.0: New tools and
advanced capabilities. Nucleic Acids Res. 49, D751–D763 (2021). doi: 10.1093/nar/gkaa939
[PubMed: 33119741]

105. Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD, Massive
expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021). doi: 10.1016/
j.cell.2021.01.029 [PubMed: 33606979]

106. Forster SC et al. , A human gut bacterial genome and culture collection for improved
metagenomic analyses. Nat. Biotechnol 37, 186–192 (2019). doi: 10.1038/s41587-018-0009-7
[PubMed: 30718869]

107. Mitchell AL et al. , MGnify: The microbiome analysis resource in 2020. Nucleic Acids Res. 48,
D570–D578 (2020). doi: 10.1093/nar/gkz1035 [PubMed: 31696235]

108. Youngblut ND et al. , Large-scale metagenome assembly reveals novel animal-associated
microbial genomes, biosynthetic gene clusters, and other genetic diversity. mSystems 5, e01045–
20 (2020). doi: 10.1128/msystems.01045-20

109. Meyer F. et al. , The metagenomics RAST server - a public resource for the automatic
phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008). doi:
10.1186/1471-2105-9-386 [PubMed: 18803844]

110. Sunagawa S. et al. , Structure and function of the global ocean microbiome. Science 348,
1261359 (2015). doi: 10.1126/science.1261359 [PubMed: 25999513]

Nguyen et al. Page 42

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

111. Finn RD, Clements J, Eddy SR, HMMER web server: Interactive sequence similarity searching.
Nucleic Acids Res. 39, W29–W37 (2011). doi: 10.1093/nar/gkr367 [PubMed: 21593126]

112. Russel J, Pinilla-Redondo R, Mayo-Muñoz D, Shah SA, Sørensen SJ, CRISPRCasTyper:
Automated Identification, Annotation, and Classification of CRISPR-Cas Loci. CRISPR J. 3,
462–469 (2020). doi: 10.1089/crispr.2020.0059 [PubMed: 33275853]

113. Altae-Tran H. et al. , Diversity, evolution, and classification of the RNA-guided nucleases
TnpB and Cas12. Proc. Natl. Acad. Sci. U.S.A 120, e2308224120 (2023). doi: 10.1073/
pnas.2308224120

114. Steinegger M, Söding J, MMseqs2 enables sensitive protein sequence searching for the analysis
of massive data sets. Nat. Biotechnol 35, 1026–1028 (2017). doi: 10.1038/nbt.3988 [PubMed:
29035372]

115. Katoh K, Misawa K, Kuma K, Miyata T, MAFFT: A novel method for rapid multiple sequence
alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002). doi:
10.1093/nar/gkf436 [PubMed: 12136088]

116. Xiong W. et al. , Effective long-context scaling of foundation models. arXiv:2309.16039 [cs.CL]
(2023).

117. Ainslie J. et al. , GQA: Training generalized multi-query transformer models from multi-head
checkpoints. arXiv:2305.13245 [cs.CL] (2023).

118. Firnberg E, Labonte JW, Gray JJ, Ostermeier M, A comprehensive, high-resolution map of a
gene’s fitness landscape. Mol. Biol. Evol 31, 1581–1592 (2014). doi: 10.1093/molbev/msu081
[PubMed: 24567513]

119. Jacquier H. et al. , Capturing the mutational landscape of the beta-lactamase TEM-1. Proc.
Natl. Acad. Sci. U.S.A 110, 13067–13072 (2013). doi: 10.1073/pnas.1215206110 [PubMed:
23878237]

120. Adkar BV et al. , Protein model discrimination using mutational sensitivity derived from deep
sequencing. Structure 20, 371–381 (2012). doi: 10.1016/j.str.2011.11.021 [PubMed: 22325784]

121. Tsuboyama K. et al. , Mega-scale experimental analysis of protein folding stability in biology and
design. Nature 620, 434–444 (2023). doi: 10.1038/s41586-023-06328-6 [PubMed: 37468638]

122. Kelsic ED et al. , RNA structural determinants of optimal codons revealed by MAGE-Seq. Cell
Syst. 3, 563–571.e6 (2016). doi: 10.1016/j.cels.2016.11.004 [PubMed: 28009265]

123. Weeks R, Ostermeier M, Fitness and functional landscapes of the E. coli RNase III gene rnc. Mol.
Biol. Evol 40, msad047 (2023). doi: 10.1093/molbev/msad047

124. Rockah-Shmuel L, Tóth-Petróczy Á, Tawfik DS, Systematic mapping of protein mutational space
by prolonged drift reveals the deleterious effects of seemingly neutral mutations. PLOS Comput.
Biol 11, e1004421 (2015). doi: 10.1371/journal.pcbi.1004421

125. Chen JZ, Fowler DM, Tokuriki N, Comprehensive exploration of the translocation, stability and
substrate recognition requirements in VIM-2 lactamase. eLife 9, e56707 (2020). doi: 10.7554/
eLife.56707

126. Melnikov A, Rogov P, Wang L, Gnirke A, Mikkelsen TS, Comprehensive mutational scanning
of a kinase in vivo reveals substrate-dependent fitness landscapes. Nucleic Acids Res. 42, e112
(2014). doi: 10.1093/nar/gku511 [PubMed: 24914046]

127. Sun S. et al. ., A proactive genotype-to-patient-phenotype map for cystathionine beta-synthase.
Genome Med. 12, 13 (2020). doi: 10.1186/s13073-020-0711-1 [PubMed: 32000841]

128. Silverstein RA et al. , A systematic genotype-phenotype map for missense variants in the human
intellectual disability-associated gene GDI1. bioRxiv 2021.10.06.463360 [Preprint] (2022);
10.1101/2021.10.06.463360.

129. Garvie CW et al. , Structure of PDE3A-SLFN12 complex reveals requirements for activation of
SLFN12 RNase. Nat. Commun 12, 4375 (2021). doi: 10.1038/s41467-021-24495-w [PubMed:
34272366]

130. Kotler E. et al. , A systematic p53 mutation library links differential functional impact to cancer
mutation pattern and evolutionary conservation. Mol. Cell 71, 178–190.e8 (2018). doi: 10.1016/
j.molcel.2018.06.012 [PubMed: 29979965]

131. Giacomelli AO et al. , Mutational processes shape the landscape of TP53 mutations in human
cancer. Nat. Genet 50, 1381–1387 (2018). doi: 10.1038/s41588-018-0204-y [PubMed: 30224644]

Nguyen et al. Page 43

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

132. Findlay GM et al. , Accurate classification of BRCA1 variants with saturation genome editing.
Nature 562, 217–222 (2018). doi: 10.1038/s41586-018-0461-z [PubMed: 30209399]

133. Kobori S, Nomura Y, Miu A, Yokobayashi Y, High-throughput assay and engineering of self-
cleaving ribozymes by sequencing. Nucleic Acids Res. 43, e85 (2015). doi: 10.1093/nar/gkv265
[PubMed: 25829176]

134. Andreasson JOL, Savinov A, Block SM, Greenleaf WJ, Comprehensive sequence-to-function
mapping of cofactor-dependent RNA catalysis in the glmS ribozyme. Nat. Commun 11, 1663
(2020). doi: 10.1038/s41467-020-15540-1 [PubMed: 32245964]

135. Domingo J, Diss G, Lehner B, Pairwise and higher-order genetic interactions during the evolution
of a tRNA. Nature 558, 117–121 (2018). doi: 10.1038/s41586-018-0170-7 [PubMed: 29849145]

136. Guy MP et al. , Identification of the determinants of tRNA function and susceptibility to rapid
tRNA decay by high-throughput in vivo analysis. Genes Dev. 28, 1721–1732 (2014). doi:
10.1101/gad.245936.114 [PubMed: 25085423]

137. Hayden EJ, Ferrada E, Wagner A, Cryptic genetic variation promotes rapid evolutionary
adaptation in an RNA enzyme. Nature 474, 92–95 (2011). doi: 10.1038/nature10083 [PubMed:
21637259]

138. Pitt JN, Ferré-D’Amaré AR, Rapid construction of empirical RNA fitness landscapes. Science
330, 376–379 (2010). doi: 10.1126/science.1192001 [PubMed: 20947767]

139. Chang TA, Bergen BK, Language model behavior: A comprehensive survey. arXiv:2303.11504
[cs.CL] (2023).

140. Hyatt D. et al. , Prodigal: Prokaryotic gene recognition and translation initiation site
identification. BMC Bioinformatics 11, 119 (2010). doi: 10.1186/1471-2105-11-119 [PubMed:
20211023]

141. Bland C. et al. , CRISPR recognition tool (CRT): A tool for automatic detection of
clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8, 209 (2007). doi:
10.1186/1471-2105-8-209 [PubMed: 17577412]

142. Kunzmann P. et al. , Biotite: New tools for a versatile Python bioinformatics library. BMC
Bioinformatics 24, 236 (2023). doi: 10.1186/s12859-023-05345-6 [PubMed: 37277726]

143. Mitrofanov A, Ziemann M, Alkhnbashi OS, Hess WR, Backofen R, CRISPRtracrRNA: Robust
approach for CRISPR tracrRNA detection. Bioinformatics 38, ii42–ii48 (2022). doi: 10.1093/
bioinformatics/btac466 [PubMed: 36124799]

144. Lorenz R. et al. , ViennaRNA Package 2.0. Algorithms Mol. Biol 6, 26 (2011). doi:
10.1186/1748-7188-6-26 [PubMed: 22115189]

145. Nawrocki EP, Eddy SR, Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29,
2933–2935 (2013). doi: 10.1093/bioinformatics/btt509 [PubMed: 24008419]

146. Zhang C, Shine M, Pyle AM, Zhang Y, US-align: Universal structure alignments of proteins,
nucleic acids, and macromolecular complexes. Nat. Methods 19, 1109–1115 (2022). doi:
10.1038/s41592-022-01585-1 [PubMed: 36038728]

147. Schrödinger LLC, The PyMOL Molecular Graphics System, version 1.8 (2015).

148. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL, The Vienna RNA Websuite.
Nucleic Acids Res. 36, W70–W74 (2008). doi: 10.1093/nar/gkn188 [PubMed: 18424795]

149. Langdon WB, Petke J, Lorenz R, in Genetic Programming, Castelli M, Sekanina L, Zhang M,
Cagnoni S, García-Sánchez P, Eds. (Springer, 2018), pp. 220–236.

150. Weinberg Z, Breaker RR, R2R - Software to speed the depiction of aesthetic consensus RNA
secondary structures. BMC Bioinformatics 12, 3 (2011). doi: 10.1186/1471-2105-12-3 [PubMed:
21205310]

151. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, Basic local alignment search tool. J. Mol.
Biol 215, 403–410 (1990). doi: 10.1016/S0022-2836(05)80360-2 [PubMed: 2231712]

152. Mirdita M. et al. , ColabFold: Making protein folding accessible to all. Nat. Methods 19, 679–682
(2022). doi: 10.1038/s41592-022-01488-1 [PubMed: 35637307]

153. Hie B, Code for paper “Sequence modeling and design from molecular to genome scale with
Evo,” Zenodo (2024); 10.5281/zenodo.12693561.

Nguyen et al. Page 44

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1. Pretraining a genomic foundation model across prokaryotic life.
(A) A model of genome sequences at single-nucleotide resolution could learn all of the

information encoded in regulatory DNA and in the sequences of the other modalities

within the central dogma (proteins, coding RNA, and ncRNA). Even further, it could learn

covariation involving multiple genes and regulatory elements. The status of DNA as the

fundamental layer of biological information makes it a productive modality at which to

develop a biological foundation model. (B)A model that predicts the likelihood of the next

token given a sequence of tokens, referred to as autoregressive modeling, can learn complex

patterns underlying DNA sequences. StripedHyena is a deep signal processing architecture

for long sequences, obtained by hybridizing attention and hyena operators. GLU, gated

linear units. (C) We pretrained Evo, a 7-billion-parameter model with the StripedHyena

architecture, on bacterial genome sequences from GTDB and IMG/PR and viral sequences

from IMG/VR, excluding sequences from viruses that infect eukaryotic hosts. (D) A

histogram depicting the sequence length of the genomes in GTDB. mb, megabases. (E)

Pie charts depicting the taxonomic makeup of GTDB based on the kingdom (left) and

phylum (right). (F) Results from a first-of-its-kind scaling laws analysis for large-scale DNA

pretraining. Models improve monotonically with scale, with significant differences between

architectures. Eval. PPL, evaluation perplexity. (G) To determine optimal architecture and

scaling for Evo, we compared scaling rates of different models pretrained on the compute-

optimal frontier, i.e., with optimal allocation of compute between dataset size and model

size.

Nguyen et al. Page 45

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2. Evo learns function across proteins, ncRNAs, and regulatory DNA.
(A) We obtained DMS datasets in which many mutations are made to a protein and a

corresponding fitness score is experimentally measured for each protein variant. On the

same set of mutated sequences, we compute its likelihood (or pseudolikelihood) under

a protein language model or a nucleotide language model (LM). We then correlated

these likelihoods with the experimental fitness measurements and used the strength of the

correlation to measure the performance of zero-shot function prediction. (B) Correlation

between zero-shot language model likelihoods or pseudolikelihoods and experimental fitness

across nine prokaryotic protein DMS datasets. Bar height indicates the mean; each dot

indicates a different DMS study. Nucl. Trans., Nucleotide Transformer. (C) We obtained

datasets in which many mutations are made to a ncRNA and a corresponding fitness score is

experimentally measured. Predictive performance is measured as in the method described in

(A). (D) Correlation between zero-shot language model likelihoods or pseudolikelihoods

and experimental fitness across seven ncRNA DMS datasets. Bar height indicates the

mean; each dot indicates a different DMS study. (E) We obtained datasets in which many

regulatory DNA sequences were measured for their effect on mRNA or protein expression.

(F) Correlation between promoter activity across four studies and zero-shot language model

likelihoods, sequence GC content, or supervised models. The supervised models include

ridge regression or a CNN trained on one-hot embeddings or Evo embeddings, as well as

a state-of-the-art supervised biophysical model of promoter activity, Promoter Calculator

(52). Supervised models are evaluated in an out-of-domain prediction setting (Materials and

methods). Ridge reg., ridge regression. Bar height indicates the mean; each dot indicates

Nguyen et al. Page 46

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a different promoter activity study. (G) We obtaineda dataset in which Kosuri et al. (56)

measured protein expression of a gene downstream of ~12,000 promoter-RBS pairs in E.
coli. When provided with both the promoter and RBS sequences, Evo has higher predictive

performance of protein expression compared with zero-shot sequence statistics or a method

trained with some supervision to predict protein expression data from mRNA sequence.

Nguyen et al. Page 47

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3. Fine-tuning on CRISPR-Cas sequences enables generative design of protein-RNA
complexes.
(A) Design task: Generating sequences encoding CRISPR-Cas defense complexes composed

of protein and ncRNA components. (B) Fine-tuning Evo on 8-kb-length genomic sequences

containing CRISPR-Cas systems after its initial 8k pretraining phase. Special conditioning

tokens (“cas9,” “cas12,” or “cas13”) prepended to the beginning of each sequence during

fine-tuning. (C) When prompting with the token for a given type of Cas protein, the most

common Cas protein found in the resulting generated sequences corresponds to that token

prompt (Materials and methods). (D) Histograms representing the distribution of percentage

identity of a generated Cas protein sequence to any Cas protein sequence in the training

dataset. Samples from a model trained only on CRISPR-Cas sequences (top) and samples

from a model fine-tuned on CRISPR-Cas off the base Evo model (bottom). Both models

were trained on CRISPR-Cas sequences using the same hyperparameters. (E) Annotated

core protein-coding genes and ncRNA components found in type II CRISPR systems in the

EvoCas9–1 locus as determined by pHMMs and CRISPR ncRNA prediction algorithms.

(F) Time course results for SpCas9 and EvoCas9–1 cleavage reactions after incubation with

cognate sgRNAs and 1 nM DNA target at a 10:10:1 molar ratio of Cas9:sgRNA:target.

Nontargeting guide RNA used to verify in vitro cleavage specificity. (G) Predicted

secondary structure of the sgRNA from the EvoCas9–1 generation. Secondary structure

differences between the EvoCas9–1 sgRNA and the SpCas9 sgRNA are highlighted in red.

(H) AlphaFold3 (AF3) structure prediction of EvoCas9–1 aligned to the crystal structure of

SpCas9 (PDB: 4OO8). (I) AlphaFold3 (AF3) structure prediction of the EvoCas9–1 sgRNA

aligned to the crystal structure (PDB: 4OO8) of the SpCas9 sgRNA (79 nt scaffold + 20 nt

Nguyen et al. Page 48

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

spacer). nt, nucleotide. (J) AlphaFold3 (AF3) structure prediction of EvoCas9–1 in complex

with its codesigned sgRNA (81 nt scaffold + 20 nt spacer).

Nguyen et al. Page 49

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4. Fine-tuning on IS200/IS605 sequences enables generative design of transposable biological
systems.
(A) IS200 and IS605 MGEs contain a TnpA transposase and are flanked by left and right

end terminal hairpins that interact with the TnpA to accomplish transposition. IS605 MGEs

additionally encode a TnpB-ωRNA complex that performs DNA cleavage. Our design task

is to produce sequences that contain these DNA, ncRNA, and protein components. (B)

We fine-tuned Evo, after its initial 8k pretraining phase, on natural sequences containing

IS200/IS605 systems. (C) Histograms representing the distribution of the percentage identity

of Evo-generated TnpA and TnpB proteins to their best match in the fine-tuning set of

natural TnpA and TnpB proteins. (D) Schematic of the in vitro assay for evaluating designed

TnpA activity on codesigned DNA ends. Excision will produce a band corresponding to

Nguyen et al. Page 50

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the formation of the RE-LE junction in the resulting circular product, and (re-)insertion

will produce a band from the joining of two ssDNA substrates, both detectable by a

single PCR. (E) Schematic of the Evo-generated IS200-like system, ISEvo1, containing

element annotations and its relevant DNA and protein features. (F) A 2% agarose gel

with SYBR Gold showing that ISEvo1 TnpA functions in vitro on ssDNA substrates,

requiring the catalytically active tyrosine (Y124) and with substantially reduced activity on

dsDNA substrates. (G) Example reads from nanopore sequencing of PCR products from

the ISEvo1 TnpA in vitro assay. (H) Schematic of the Evo-generated IS605-like system,

ISEvo2, containing element annotations and its relevant DNA, RNA, and protein features.

(I) A 2% agarose gel with SYBR Gold showing that ISEvo2 TnpA functions in vitro on

ssDNA substrates, requiring the catalytically active tyrosine (Y125) and with substantially

reduced activity on dsDNA substrates. (J) Example reads from nanopore sequencing of PCR

products from the ISEvo2 TnpA in vitro assay.

Nguyen et al. Page 51

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5. Evo learns mutational effects on organismal fitness across diverse bacterial and phage
genomes.
(A) For genome-scale prediction and generation tasks, we first pretrained Evo on sequences

with 8192 tokens and then extended its context window size in a second pretraining phase

to sequences of 131,072 tokens. (B) We performed an in silico, genome-wide mutagenesis

screen in which we introduced premature stop codons at each coding sequence in a genome.

We computed the language model (LM) likelihood of the mutated gene sequence plus some

amount of additional genomic context (up to 66 kb). We then took the ratio of this likelihood

to the likelihood of the unmutated sequence. We tested whether these likelihood ratios would

be predictive of gene essentiality. (C) Violin and strip plots of the distribution of the strength

of gene essentiality prediction across 58 studies (each dot corresponds to a different study),

in which each study conducted a genome-wide essentiality screen in a bacterial (N = 56)

or phage (N = 2) species. We measured predictive performance as the AUROC in which

the LM likelihood ratio is used to predict a binary label of “essential” or “nonessential.”

“Gene-only context” indicates that the model is provided with only the gene sequence and

no additional flanking genomic context. “8k context” and “66k context” indicate that the

LM is provided with the gene sequence and flanking genomic context up to a total of

8192 or 65,536 tokens, respectively. Evo has some predictive performance with gene-only

context, has vastly improved performance from gene-only to 8k context, and some outlier

improvements from 8k to 66k context. (D) Histograms representing the distributions of the

log of the likelihood ratios (“Evo score”) for the essential genes (blue) and the nonessential

genes (yellow) in two genomes: lambda phage (top) and P. aeruginosa (bottom). These

results are based on providing Evo with 66k context.

Nguyen et al. Page 52

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6. Evo generates megabase-scale sequences with plausible genomic architecture.
(A) We prompted Evo with species-level tokens used during the second pretraining stage.

We use bacterial species prompts and generate sequences of ~650 kb in length. (B)

Histograms depicting the distribution of coding density scores among 131-kb crops of

sequences generated by Evo (“Evo generated”), sequences from natural bacteria (“natural

genomes”), or sequences in which the four base pairs were sampled uniformly at random

(“random sequences”). (C) Arrow plots depicting the organization of coding sequences on

an example 131-kb sequence generated by Evo, derived from a natural genome, or sampled

randomly. Coding sequences are depicted as arrows in which the horizontal length of the

arrow corresponds to the genomic interval and the direction of the arrow indicates the strand.

The top and bottom rows of arrows indicate the 5′-to-3′ and 3′-to-5′ strands, respectively,

and the Evo-generated sequence was designated as the 5′-to-3′ strand. Both Evo-generated

and natural genomes exhibit operon-like structure in which clusters of colocated genes are

on the same strand. (D and E) An ~1-Mb generated sequence is represented as an arrow

plot, as in (C). Below this arrow plot are ESMFold structure predictions of all protein

coding sequences from 100 through 1024 amino acids in length, as identified by Prodigal.

Nguyen et al. Page 53

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Structure predictions are aligned to natural proteins, which are then mapped to associated

GO molecular function terms (Materials and methods). The largest GO categories are

displayed as clusters alongside a large cluster containing all other proteins. ATP, adenosine

triphosphate. (F) Log2 of TUDs of Evo-generated versus natural genomes for each species

prompt. Statistics are the Pearson correlation coefficient test. Shaded regions indicate a 95%

confidence interval. (G) Hierarchical clustering of Evo-generated and natural genomes based

on Euclidean distances of the TUDs. (H) Percent usage of each stop codon in all three

reading frames of Evo-generated, natural, and random ORFs.

Nguyen et al. Page 54

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	Abstract
	Graphical Abstract
	Modeling long sequences at nucleotide resolution with the StripedHyena architecture
	Training Evo at scale on OpenGenome
	StripedHyena demonstrates favorable scaling laws on DNA sequence data
	Evo learns across DNA, RNA, and protein modalities
	Predicting mutational effects on protein function
	Predicting mutational effects on ncRNA function
	Predicting activity of regulatory DNA

	Generative design of CRISPR-Cas molecular complexes
	Generative design of transposon systems
	Learning gene essentiality with long genomic context
	Generating DNA sequences at genome scale
	Discussion
	Materials and methods
	StripedHyena architecture
	Hyena layers
	Self-attention layers
	Positional embeddings
	Tokenization
	OpenGenome datasets
	Training procedure
	Dataloading
	Hyperparameter tuning and direct model comparisons
	Scaling laws
	Scaling laws procedure
	Transformer++
	Hyena
	Mamba
	Generating DNA sequences with Evo
	Controllable generation
	Protein function prediction
	ncRNA function prediction
	Gene expression prediction from regulatory DNA
	CRISPR-Cas fine-tuning and generation
	CRISPR-Cas sampling evaluation
	CRISPR-Cas in vitro cleavage
	CRISPR-Cas recombinant expression and purification
	IS200/IS605 fine-tuning and generation
	IS200/IS605 categorical Jacobian analysis
	IS200/IS605 filtering of generations and construct design
	IS200/IS605 TnpA protein preparation
	IS200/IS605 substrate DNA preparation
	IS200/IS605 in vitro TnpA excision/insertion assays
	IS200/IS605 nanopore sequencing analysis of PCR products
	Gene essentiality prediction
	Genome-scale generation and evaluation

	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.

