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INTRODUCTION: The fundamental instructions of life are encoded in the DNA sequences of
all living organisms. Understanding these instructions could unlock deeper insights into biological
processes and enable new ways to reprogram biology into useful technologies. However, even the
simplest microbial genomes are incredibly complex, with millions of DNA base pairs encoding
the interplay of DNA, RNA, and proteins—the three modalities of the so-called central dogma

of molecular biology and the key actors in cellular function. This complexity exists at multiple
scales, from individual molecules to whole genomes, representing a vast landscape of genetic
information that has been functionally selected over evolutionary time.

RATIONALE: Rapid progress in artificial intelligence (Al) has led to large language models that
demonstrate increasingly advanced multitask reasoning and generation capabilities when trained
on massive amounts of data. However, technological limitations in the architecture of these models
have restricted efforts to apply them to biology at a similar scale. Current approaches struggle

to analyze sequences at the individual character level and are computationally demanding when
applied to long sequences. An advanced model maintaining single-nucleotide resolution over large
genomic sequences could potentially extract functional information about the complex molecular
interactions that are embedded in the patterns of natural evolutionary variation.

RESULTS: In this work, we present Evo, a genomic foundation model that enables prediction
and generation tasks from the molecular to the genome scale. Using an architecture based on
advances in deep signal processing, we scaled Evo to 7 billion parameters with a context length
of 131 kilobases at single-nucleotide resolution. We report scaling laws on DNA, complementing
similar observations in natural language and vision. Trained on 2.7 million prokaryotic and
phage genomes, Evo demonstrates zero-shot function prediction across DNA, RNA, and protein
modalities that is competitive with—or outperforms—domain-specific language models. Evo
also excels at multimodal generation tasks, which we demonstrated by generating synthetic
CRISPR-Cas molecular complexes and transposable systems. We experimentally validated the
functional activity of Evo-generated CRISPR-Cas molecular complexes as well as 1S200 and
IS605 transposable systems, representing the first examples of protein-RNA and protein-DNA
codesign with a language model. Using information learned over whole genomes, Evo learns
how small changes in nucleotide sequence affect whole-organism fitness and can generate DNA
sequences with plausible genomic architecture more than 1 megabase in length.

CONCLUSION: Evo is a foundation model that is designed to capture two fundamental aspects
of biology: the multimodality of the central dogma and the multiscale nature of evolution. The
central dogma integrates DNA, RNA, and proteins with a unified code and predictable information
flow, whereas evolution unifies the vastly different length scales of biological function represented
by molecules, pathways, cells, and organisms. Evo learns both of these representations from the
whole-genome sequences of millions of organisms to enable prediction and design tasks from

the molecular to genome scale. Further development of large-scale biological sequence models
like Evo, combined with advances in DNA synthesis and genome engineering, will accelerate our
ability to engineer life.

Abstract

The genome is a sequence that encodes the DNA, RNA, and proteins that orchestrate an
organism’s function. We present Evo, a long-context genomic foundation model with a frontier
architecture trained on millions of prokaryotic and phage genomes, and report scaling laws on
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DNA to complement observations in language and vision. Evo generalizes across DNA, RNA,
and proteins, enabling zero-shot function prediction competitive with domain-specific language
models and the generation of functional CRISPR-Cas and transposon systems, representing the
first examples of protein-RNA and protein-DNA codesign with a language model. Evo also learns
how small mutations affect whole-organism fitness and generates megabase-scale sequences with
plausible genomic architecture. These prediction and generation capabilities span molecular to
genomic scales of complexity, advancing our understanding and control of biology.

Graphical Abstract
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Evo: A genomic foundation model

o (

Evo, a 7-billion-parameter genomic foundation model, learns biological complexity from
individual nucleotidesto whole genomes. Trained on 2.7 million raw prokaryotic and phage
genome sequences, Evo is naturally multimodal, enabling the codesign of DNA, RNA, and protein
molecules that form higher-order functional systems. Evo is also inherently multiscale, enabling
prediction and generation tasks at the level of molecules, systems, and genomes.

DNA is the fundamental layer of biological information that is responsible for transmitting
the results of evolution across generations of life (1-3). Evolutionary variation in genome
sequences reflects adaptation and selection for biological function at the phenotypic level
(4). Rapid advances in DNA sequencing technologies have enabled the systematic mapping
of this evolutionary diversity at the whole-genome scale.

A machine that learns this breadth of information across genomes could model the function
of DNA, RNA, and proteins as well as their diverse interactions that orchestrate complex
biological functions, mediate disease, or create a complete organism. Modern machine
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learning algorithms combined with massive datasets of genomic sequences could enable a
general biological foundation model that learns the intrinsic logic of whole genomes.

However, current efforts to model molecular biology with machine learning have been
Focused on creating modality-specific models that are specialized to proteins, coding
sequences, RNA, or regulatory DNA (5-9). In addition, generative applications in biology
have been limited to the design of single molecules, simple complexes (10-12), or

short DNA sequences (13, 14). By contrast, complex biological processes, such as gene
regulation, CRISPR immunity, or genetic transposition, rely on many interactions involving
molecules across multiple modalities.

A DNA model that unifies information across the molecular, systems, and genome scales
could learn from large genomic regions to capture systems-wide interactions and enable

the design of more-sophisticated biological functions. By operating at single-nucleotide
resolution, this model would be able to incorporate the evolutionary effects of sequence
variation, such as individual single-nucleotide mutations, that can completely alter organism
function.

Inspired by the recent success of large language models, many approaches have applied
similar modeling techniques to biological sequences. However, existing attempts to model
DNA as a language (15-17) are limited by the prevailing dense Transformer architecture,
which incurs high computational cost as input sequence lengths grow relative to model
width (scaling quadratically) and generally underperforms at single-nucleotide or byte-level
resolution compared with models trained at coarser resolutions (18). Recent algorithmic
advances in extending context length of attention-based models (19, 20) have similar
resolution limitations. As a result, Transformer-based DNA models are constrained to short
context lengths and use schemes that aggregate nucleotides into the basic units of language
models, called tokens, thereby sacrificing single-nucleotide resolution (15, 16, 21-23).

We present Evo, a 7-billion-parameter genomic foundation model trained to generate DNA
sequences at whole-genome scale. Evo uses a context length of 131,072 tokens and is
based on the StripedHyena architecture (24), which hybridizes attention and data-controlled
convolutional operators to efficiently process and recall patterns in long sequences. Evo is
trained on a prokaryotic whole-genome dataset consisting of 300 billion nucleotides and
uses a byte-level, single-nucleotide tokenizer. By conducting a scaling laws analysis for
DNA pretraining, we observe predictable performance gain with larger scale.

We demonstrate that Evo can be used in both prediction and generation tasks at the
molecular, systems, and genome scale. In zero-shot evaluations, Evo is competitive with
protein language models at predicting the fitness effects of mutations on bacterial proteins,
outperforms RNA language models in predicting fitness effects of mutations on noncoding
RNAs (ncRNAs), and predicts how regulatory DNA sequence composition controls gene
expression. Evo also learns the coevolutionary linkage of coding and noncoding sequences
to design functional biological systems including CRISPR-Cas ribonucleoprotein complexes
and transposable elements, requiring codesign of protein-RNA and protein-DNA systems,
respectively.
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At the whole-genome scale, Evo understands how small mutations in genomes affect
organismal fitness, indicating its ability to learn aspects of gene function within a broader
genomic context. We also use Evo to generate genome-scale sequences with plausible high-
level architecture more thanl megabase (Mb) in length, a scale that is orders of magnitude
greater than previous methods (10, 13, 14). Taken together, Evo establishes a foundational
paradigm for predictive and generative biological modeling (Fig. 1A) that could enable a
deeper understanding of biology and accelerate our ability to engineer life.

Modeling long sequences at nucleotide resolution with the StripedHyena

architecture

Evo is a genomic foundation model with 7 billion parameters trained with a context length
of up to 131,072 tokens, using single-nucleotide, byte-level tokenization. To model long
sequences at nucleotide resolution efficiently, we leveraged the StripedHyena architecture
(24) (Fig. 1B) that builds on emerging techniques in deep signal processing (25-28). The
model is a hybrid of 29 layers of data-controlled convolutional operators (hyena layers)
interleaved with three layers (10%) of multihead attention equipped with rotary position
embeddings (ROPEs) (29) (table S1 and Materials and methods).

Hyena layers process sequences in an input-dependent manner using compositions of short
and long convolution filters (Fig. 1B), making the layer especially effective at filtering
noisy patterns that can occur in DNA and at aggregating individual nucleotides into motifs.
Model hybridization, first proposed to address shortcomings of state-space models (30-32),
has recently been shown to improve scaling performance on language modeling of both
standalone Hyena and Transformer architectures (24). Compared with HyenaDNA (33), a
previous generation of DNA models leveraging a Hyena architecture (34), Evo is based on
an improved hybrid design and scaled to 1000x larger model size and 100x more data.

Training Evo at scale on OpenGenome

We compiled a large genome dataset called OpenGenome (Materials and methods) with
more than 80,000 bacterial and archaeal genomes and millions of predicted phage and
plasmid sequences, covering 300 billion nucleotide tokens (Fig. 1, C to E; fig. S1; and table
S2) (35-37). For safety considerations, we excluded viral genomes that infect eukaryotic
hosts. Like most language models, Evo is pretrained using a next-token prediction objective
on raw genome sequences with no explicit supervision or annotations. Pretraining involved a
first stage usinga context length of 8192 tokens and a second context-extension stage using a
context length of 131,072 tokens.

StripedHyena demonstrates favorable scaling laws on DNA sequence data

Aiding our model design, we performed a scaling laws analysis for DNA sequence modeling
to determine the relationship between training, architectural details, and performance
metrics through a systematic experimental protocol (38, 39). Once a set of scaling laws

is obtained, it can then be used as a guide to optimally scale training to larger models and
datasets.
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We compare different classes of architectures using a compute-optimal protocol, aimed at
evaluating results on the compute-optimal frontier (Materials and methods). We trained
more than 300 models across four architectures: Transformer++, Mamba, Hyena, and
StripedHyena (table S3). Transformer++ is a state-of-the-art Transformer, and Mamba is
a modern architecture using data-controlled state-space models (40).

We found Transformer++ to yield substantially worse perplexity (a measure of next

token prediction quality) at all compute budgets (Fig. 1, F and G), a symptom of the
inefficiency of the architecture at the byte resolution. Both state-space and deep signal
processing architectures had an improved scaling rate over Transformer++, with Hyena and
StripedHyena resulting in the best scaling rate. We observed stable training for StripedHyena
throughout all the studied model sizes and learning rates during the scaling analysis.

We also compare architecture performance outside the compute-optimal frontier, namely
with allocations of the computational budget that may be suboptimal. Performance outside
the compute-optimal frontier is important in practice, as most models (including Evo) are
trained for more tokens than recommended by compute-optimal scaling laws. We estimate
250 billion to be the compute-optimal number of tokens for Evo 7B given the floating
point operation (FLOP) budget, meaning the model was trained at a 17% offset from

the compute-optimal model size during the initial 8192 sequence length pretraining phase
of 300 billion tokens. Both Transformer++ and Mamba experienced numerical instability
during training and suffered from a higher performance degradation of the scaling rate
outside the compute-optimal frontier, in contrast to StripedHyena (figs. S3 to S7). These
findings motivate the choice of StripedHyena as the architecture for Evo.

Evo learns across DNA, RNA, and protein modalities

Predicting mutational effects on protein function

Beyond evaluating perplexity, we next investigated the model’s zero-shot performance on
biologically relevant downstream tasks. For example, language models specifically trained
on large corpuses of protein sequences or nucleotide coding sequences have demonstrated
an ability to predict mutational effects on protein function (41-43) without any task-specific
fine-tuning or supervision. Because Evo’s training data contains protein coding sequences,
we tested whether the model could also perform zero-shot protein function prediction.
Notably, Evo is trained on genomic sequences without any explicit coding sequence
annotations.

Following work in evaluation of protein language models, we leveraged deep mutational
scanning (DMS) studies, which introduce an exhaustive set of mutations to a protein coding
sequence and then experimentally measure the effects of these mutations on various fitness
metrics, which quantify functional activity (42, 44, 45). The language-model likelihood or
pseudolikelihood (Materials and methods) of the amino acid sequence is used to predict the
experimental fitness score (Fig. 2A). To adapt this task to nucleotide sequences, we use the
wild-type coding sequence and nucleotide mutations reported in the original DMS studies
(Materials and methods).
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On DMS datasets of prokaryotic proteins, Evo’s zero-shot performance exceeded all

other nucleotide models tested (Fig. 2B and table S4), including GenSLM (15)—a model
explicitly trained only on coding sequences with a codon vocabulary (Fig. 1A). Evo also
reaches competitive performance with leading protein-specific language models (41, 46-48)
(Fig. 2B). Previous work has shown that improvement beyond this performance range is
difficult for protein language models with self-supervised pretraining alone (49), indicating
that Evo is already competitive with state-of-the-art protein language modeling on bacterial
proteins. On DMS datasets of human proteins, Evo is unable to predict mutational effects on
fitness (fig. SBA and table S5), most likely because the pretraining dataset is composed of
prokaryotic sequences. However, we observed a strong association between language-model
perplexity on the wild-type sequence and fitness prediction performance (fig. S8B), which
indicates that additional fine-tuning or future pretraining on mammalian coding sequences
could improve Evo’s performance beyond bacterial proteins.

Predicting mutational effects on ncRNA function

Next, we tested whether the same pretrained model could learn functional information about
ncRNAs, such as tRNAs, ribosomal RNAs (rRNAs), and ribozymes. We collected ncRNA
DMS datasets (Materials and methods) and evaluated Evo’s ability to perform zero-shot
ncRNA fitness prediction using the results of experimental ncRNA DMS studies as the
ground truth score (Fig. 2C).

We found that Evo again outperforms all other tested nucleotide language models at this
task, including RNA-FM (50), an RNA language model that is explicitly trained on ncRNA
sequences (Fig. 2D and table S6). We observed especially strong predictive performance
on a study that measured the effects of mutations to the 5SrRNA on the growth rate

of Escherichia coli (Spearman correlation coefficient 7= 0.60, two-sided £distributed P=
1.9 x 1073) (51). Beyond protein sequences, these results demonstrate that Evo can learn
mutational effects on ncRNA function.

Predicting activity of regulatory DNA

Given that Evo’s training also contains prokaryotic regulatory DNA sequences, we
investigated whether Evo has learned information that is useful for regulatory DNA tasks.
We focused on predicting gene expression from promoter sequences and protein expression
from sequences of ribosome-binding sites (RBSs) (Fig. 2E).

For supervised promoter activity prediction, we followed a previous study (52) in which a
regression model is developed using train and validation splits from a single study, and the
final model is then tested on promoter datasets from other studies to assess out-of-domain
generalizability (Materials and methods). We used the three test datasets from LaFleur et a/.
(52-55) and a dataset in which Kosuri et al. constructed ~12,000 combinations of common
promoters and RBSs and measured the corresponding mRNA expression of a reporter gene
for each promoter-RBS pair in £. coli (56).

Evo’s zero-shot likelihoods had non-negligible correlation with promoter activity across
these four studies (mean Spearman r= 0.43). These correlations also exceed those of
the sequence guanine-cytosine (GC) content (mean Spearman = 0.35) and the zero-
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shot likelihoods of GenSLM (mean Spearman r= 0.09) (Fig. 2F and table S7). We

also trained two supervised models, a ridge regression linear model and a convolutional
neural network (CNN), on either Evo embeddings or one-hot-encoded sequence. The CNN
architecture substantially outperformed ridge regression across both embeddings, and the
Evo embeddings substantially outperformed one-hot embeddings across both architectures
(Fig. 2F and table S7). Notably, even zero-shot Evo likelihoods had comparable predictive
performance (mean Spearman 7= 0.43) to a CNN trained on one-hot embeddings (mean
Spearman r= 0.44), which indicates that Evo’s pretraining contributes useful information
to function prediction. Combining the Evo embeddings with a supervised CNN architecture
(mean Spearman r= 0.56) also approached the performance of Promoter Calculator (52),

a state-of-the-art method for promoter activity prediction (mean Spearman 7= 0.62). These
results indicate that Evo has learned sequence-intrinsic information that is a useful correlate
of promoter activity and motivates improving zero-shot learning within the foundation
model to improve downstream performance in specific, supervised tasks.

For protein expression prediction, we used the dataset collected by Kosuri et a/. (56), which
contains RBSs in addition to promoters and which also measured protein expression in
addition to mRNA expression. Evo’s zero-shot likelihoods of the RBS sequence alone had
weak correlation with protein expression (Spearman = 0.17). However, when concatenating
the promoter and RBS sequence together, Evo’s zero-shot likelihoods improved substantially
(Spearman r= 0.61); this correlation is also higher than the zero-shot correlation of

just the promoter sequence alone (Spearman r= 0.47), which indicates that additional
regulatory sequence could provide useful functional context. Evo’s zero-shot correlation

on promoter-RBS sequences is also higher than the GC content of the promoter-RBS
sequences (Spearman r= 0.47), zero-shot GenSLM likelihoods (Spearman r=0.11), and
RBS Calculator (Spearman r= 0.39)—a state-of-the-art protein expression predictor (Fig.
2G) (57, 58).

Overall, we show how a single model can perform well on tasks that have previously
been accomplished by different, domain-specific models. Despite being trained on long
genomic sequences without explicit annotations, Evo demonstrates a robust and general
understanding of the constitutive protein coding sequences, ncRNA sequences, and
regulatory elements.

Generative design of CRISPR-Cas molecular complexes

Next, we reasoned that Evo should be able to generate functional complexes that involve
interactions between distinct molecular modalities. In prokaryotes, functionally related
genes are generally organized into operons and located next to each other on the genome
sequence. Because Evo learns covariation patterns involving any genetic elements within
its context window, the model should understand interactions between encoded protein
and ncRNA molecules. To demonstrate this capability, we fine-tuned Evo on a dataset

of genomic loci containing CRISPR-Cas sequences—molecular machines that consist of
protein and ncRNA components that, together, direct adaptive immunity against viral
infection (59).
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The DNA-targeting Cas9 nuclease is typically encoded within 3000 to 4800 base pairs (bp)
of coding sequence and found in close genomic proximity to its cognate CRISPR array
(60). Transcription from the CRISPR array generates noncoding CRISPR RNA (crRNA)
molecules that are bound by the Cas protein to generate a functional defense complex

that is required for sequence-specific DNA targeting (Fig. 3A). For Cas9 in particular, a
second trans-activating CRISPR RNA (tracrRNA) forms a duplex with the crRNA to create
a full guide RNA (gRNA). Diverse families of CRISPR-Cas systems are found throughout
bacterial and archaeal life, such as Cas12- or Cas13-based systems that target DNA and
RNA, respectively (61).

We fine-tuned Evo on 72,831 CRISPR-Cas loci extracted from public metagenomic and
genomic sequences, adding special prompt tokens for Cas9, Cas12, and Cas13 that were
prepended to the beginning of each training sequence (Fig. 3B). During sampling, these
tokens allow us to guide generation of a specific CRISPR-Cas system type by prompting
with the corresponding special token. Sampling 8-kb sequences using each of the three

Cas token prompts resulted in coherent generations containing Cas coding sequences and
CRISPR arrays corresponding to the expected subtype (Fig. 3C and Materials and methods).
Evo generations were classified as Cas9, Cas12, or Cas13 sequences if they contained a
CRISPR array detected with the MinCED package and an open reading frame (ORF) that
returns a positive hit using a Cas9, Cas12, or Cas13 profile hidden Markov model (pHMM),
with a significance threshold of an E value < 1 x 1073, Sequence alignment with the training
dataset revealed that some of the predicted ORFs that returned a positive hit using a Cas9
pHMM also exhibited <40% protein sequence identity to the closest natural Cas9 (Fig. 3D).
We also found that the Evo model fine-tuned on CRISPR-Cas loci produces higher quality
and more diverse generations across all Cas subtypes compared with a model trained solely
on CRISPR-Cas sequences (Fig. 3D and Materials and methods).

Next, we filtered ~2 million Evo-generated sequences for Cas9 loci that contained a Cas9
ORF with RuvC and HNH domains, a CRISPR repeat array, and a detectable tracrRNA
sequence (fig. S9), selecting 11 Cas9 systems with robust predicted local distance difference
test (pLDDT) scores for functional validation. These samples contain conserved CRISPR-
associated genes such as Casl and Cas2 involved in CRISPR adaptation, and the positional
entropies from the fine-tuned Evo model delimit the boundaries of the protein-coding genes
within the locus as well as the noncoding CRISPR repeat motifs (Fig. 3E).

We evaluated the 11 Cas9 generations using an initial in vitro transcription-translation assay
followed by the introduction of a DNA target containing an NGG protospacer adjacent
motif (PAM) sequence (fig. S14). One of the generations exhibited robust activity, which
we named EvoCas9-1. Recombinant expression and purification of EvoCas9-1 paired with
chemically synthesized Evo-generated single guide RNA (sgRNA) exhibited comparable in
vitro cleavage activity to SpCas9 paired with the canonical SpCas9 sgRNA (Fig. 3F) (62,
63). We further observed that the Evo-generated sgRNA also improved cleavage efficiency
of SpCas9 when compared with a canonical SpCas9 sgRNA (fig. S15 and Materials and
methods).
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The EvoCas9-1 amino acid sequence shares 79.9% identity with the closest Cas9 in the
database of Cas proteins used for model fine-tuning and 73.1% identity with SpCas9. Evo-
designed sgRNA is 91.1% identical to the canonical SpCas9 sgRNA and exhibits secondary
structure differences in the two terminal stem loops, notably extending the length of stem
loops 2 and 3 (Fig. 3G). Although the predicted backbone structure of EvoCas9-1 resembles
that of SpCas9, the predicted structure of EvoCas9-1 exhibits a more positive surface charge
distribution (Fig. 3H and fig. S16B). The isolated sgRNA structures from the SpCas9 crystal
structure and the structure of the EvoCas9-1 sgRNA predicted by the AlphaFold3 model
(64) show strong agreement in RNA secondary structure (Fig. 31). The AlphaFold3 cofolded
structure prediction for EvoCas9-1 has a high mean pLDDT score of 90 across its protein,
RNA, and DNA components (Fig. 3J).

EvoCas9-1 was generated from just 11 code-signs, representing a robust success rate
given the complexity of Cas9’s multistep mechanism (fig. S14), which requires intricate
coordination of protein domains and nucleic acid interactions. Furthermore, the diverse
generations were tested on a single NGG PAM, and this sequence preference is known to
vary across Cas9 orthologs.

Designing new Cas systems currently relies on mining sequence databases for homologous
proteins, where natural evolution provides functional diversity. By leveraging Evo’s inherent
multimodal capabilities, we can codesign protein-RNA complexes with a single language
model, providing a design methodology that can be harnessed across the broad diversity

of CRISPR systems and expanding the repertoire of CRISPR technologies beyond what is
found in nature.

Generative design of transposon systems

In addition to molecular complexes, Evo learns patterns underlying multigene systems.
Mobile genetic elements (MGES) are biological systems that often contain multiple genes
and are found throughout all domains of life. Their opportunistic spread drives sequence
variation, new gene function, and even speciation (65). The 1S200/1S605 family of MGEs
spreads through “peel-and-paste” transposition catalyzed by the homodimeric transposase
TnpA interacting with terminal hairpins at the left end (LE) and right end (RE) of the
element. The insertion sequence (1S) is excised from single-stranded DNA (ssSDNA) as a
circular product containing an RE-LE junction, which serves as an intermediate for insertion
into a new ssDNA target site. 1S605 elements additionally contain an RNA-guided TnpB
nuclease and a cognate wRNA that bias the selfish inheritance of the transposable element
(Fig. 4A) (66—69). The ability to generate new MGEs could improve our understanding of
their biological function and enable the design of more effective genome engineering tools.

We fine-tuned Evo on 10,720 1S605 elements and 219,866 15200 elements in their natural
sequence context (Fig. 4B and Materials and methods). We next calculated the entropy of
the conditional probabilities at each position across natural 1S200/1S605 loci (fig. S18) and
observed a sharp and sustained increase in entropy corresponding with the 3" end of the
element in particular, indicating that Evo learned a representation of the MGE boundaries.
Beyond first-order positional statistics, we also observed that the model learns pairwise
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relationships between positions in the sequence using a “categorical Jacobian” analysis (70),
in which we vary the value of each position in the input sequence and measure the resulting
changes in the model outputs at all positions. We observed that the model uses information
from one end to specify the other end across a distance of ~1 to 2 kb, reflecting the model’s
understanding of the tight evolutionary linkage of the two terminal elements (fig. S19).

Using special prompt tokens, we used the fine-tuned model to generate 1S200 or 1S605
elements (fig. S18A). TnpA and TnpB proteins that were detected within these generated
sequences varied widely in their distance from the nearest examples in the training set (Fig.
4C), with consistently high ESMFold pLDDT values for predicted structures that were >40
to 50% identity to the training set (fig. S18B) and a sequence length distribution that closely
matched proteins in the training set (fig. S18C).

To select sequences for experimental validation, we filtered by similarity to natural systems
(I1SSpn6, 1SStinl0, ISHP608, and 1ISDgel0) as well as TnpA protein—level and DNA
sequence—level features (fig. S20) and experimentally tested 24 1S200-like and 24 1S605-
like designs in vitro. We assay for TnpA-mediated excision and insertion by incubating
TnpA protein produced through in vitro transcription-translation with a sSSDNA substrate
containing the putative left and right ends, followed by a polymerase chain reaction (PCR)
with outward-facing primers. If excision occurs, a band is produced from the formation of
the RE-LE junction. If the donor contains other target sites and insertion also occurs, bands
are produced from the joining of the two ssSDNA substrates by the same PCR reaction (Fig.
4D).

We observed that 11 out of 24 Evo-generated 1S200-like elements and 3 out of 24 Evo-
generated 1S605-like elements demonstrated evidence for both excision and insertion in
vitro (Fig. 4E to J, and fig. S21). This activity was also dependent on the presence of a
putative catalytic tyrosine and on having a sSSDNA substrate instead of double-stranded DNA
(dsDNA\), consistent with the known mechanism for 1S200/1S605 TnpA (Fig. 4, F and I).

To identify the precise boundaries of each element, we performed nanopore sequencing

of the PCR products (Fig. 4, G and J, and figs. S22 and S23). As a control, we tested

the natural 1S200 element 1SSpn6 and 1S605 element ISHp608, and in both cases, we
successfully detected the ISFinder-annotated boundaries (71), additionally revealing that the
ISSpn6 TnpA can also mobilize using additional left and right ends within the locus (fig.
S24). Three of our generated elements also appeared to mobilize using more than one left or
right end pair (figs. S23, S25, and S26). The functional 1S605-like elements, which contain
putative TnpB coding sequences, also contain sequences with significant matches (cmsearch
E value < 0.001) to a covariance model constructed from known wRNAs (Fig. 4E and fig.
S26). As a whole, the 14 active elements use a diverse set of hairpins (Fig. 4, E and H, and
figs. S25 and S26) and encode functional TnpA proteins with sequence identity as low as
67% to the fine-tuning database.

These generative results are notable given that successful transposition requires TnpA
proteins that functionally dimerize, TnpA dimer interactions with DNA hairpins in the
LE and RE, base pairing between the LE and RE hairpins and the target site, and
strand cleavage and exchange. Despite the complexity of this mechanism, we observed
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a high design success rate, nearing 50% for the 1S200-like systems. Generative design
and diversification of this functional class of MGEs could explore regimes of high
activity unconstrained by natural evolutionary pressure on transposon fitness, expanding
our understanding of transposase protein requirements and enabling biotechnological
applications.

Learning gene essentiality with long genomic context

Beyond the molecular or systems level, we designed Evo to be capable of analyzing whole
genomes. We conducted a second stage of pretraining in which Evo processed sequences
with 131,072-token context (Fig. 5A) that also contained species-specific tokens. This stage
used data from the genome taxonomy database (GTDB) and a subset of IMG/VR that
excludes eukaryaotic viruses (Fig. 1C, fig. S1, and Materials and methods). Evo maintains
single-nucleotide resolution at its 131,072 context length, which is important because even
a single-nucleotide mutation in an essential gene can be incompatible with life if it disrupts
that gene’s expression or function (72).

To this end, we evaluated whether Evo would be sensitive to mutations in essential genes
solely based on small changes in a long genomic sequence. We conducted an experiment

in which we inserted premature stop codons at the beginning of each coding sequence in

a given organism’s genome and measured the effects of these changes on Evo’s likelihood
with respect to the likelihood of the wild-type sequence (Fig. 5B). When computing the
changes to the mutant versus wild-type sequences, we evaluated Evo on the gene sequence
alone (“gene-only context”) or the gene sequence with lanking context up to a total of

8192 tokens (“8k context™) or 66,000 tokens (“66k context™) (Materials and methods). We
hypothesized that mutations to essential genes would result in larger, more negative changes
in log-likelihood compared with mutations to nonessential genes.

On a dataset of 56 whole-genome essentiality studies in bacteria from the DEG database
(73) and two whole-genome essentiality studies in phage from Piya et al. (74), we
observed that the changes in Evo log-likelihood with 66k context are significantly associated
(Bonferroni-corrected permutation-based £ < 0.05) with gene essentiality in 49 of 58
genomes. We also observed that providing the model with additional genomic context
beyond the gene sequence results in a substantial improvement in performance, especially
from gene-only context to 8k context. From 8k to 66k context, the average predictive
performance is comparable, although performance on the lower range of examples does
improve with longer context (Fig. 5C and fig. S27, A and B). For a few genomes, the
zero-shot performance with 66k context is notably strong, with an AUROC of 0.90 on
lambda phage essentiality data (74) and an AUROC of 0.84 on Pseudomonas aeruginosa
essentiality data (75) (Fig. 5D).

Evo likelihood changes are also indicative of gene essentiality when using different in silico
mutagenesis strategies, such as varying the number of stop codons inserted or deleting the
gene sequence entirely (fig. S27C and Materials and methods), though we did not attempt an
exhaustive search of the best prompting strategy for this task. GenSLM, a codon language
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model that had mild predictive performance of mutational effects on single-gene protein
function (Fig. 2B), did not demonstrate sensitivity to gene essentiality (Fig. 5C).

As control analyses, we examined genome position and sequence conservation. A gene’s
position in the genome showed no link to essentiality (Fig. 5C). We observed that more
conserved sequences tended to be essential, with an association strength similar to that of
Evo with gene-only context but weaker than that of Evo with genomic sequence context
(Fig. 5C).

These results highlight the added value of Evo’s ability to consider genomic context when
predicting gene essentiality. Together, these results demonstrate that Evo can learn how
small mutations affect fitness at a whole-organism level across many bacterial and phage
species, without any explicit genome annotations, task-specific training data, or functional
labels. In contrast to protein or codon language models, Evo can learn how individual genes
interact with a broader genomic context.

Generating DNA sequences at genome scale

Given Evo’s generative capabilities, we were interested in testing its generation quality at
long sequence lengths without additional fine-tuning. We used Evo to sample 16 sequences
each containing ~1 Mb, representing more than seven times the model’s context length of
131 kb. For comparison, the smallest “minimal” bacterial genomes are ~580 kb in length
(76). We prompted the model to generate bacterial genomes using the species-level tokens
in the training dataset (Fig. 6A). To evaluate how closely our generated sequences resemble
natural genomes, we used CheckM (77), a tool originally designed to assess the quality of
bacterial DNA sequenced from nature. CheckM computes various metrics, including coding
sequence density and the presence of highly conserved prokaryotic marker genes. We used
these statistics to compare the key characteristics of our generated sequences with those of
natural genomes.

Notably, Evo generated sequences have nearly the same coding densities as natural
genomes, and substantially higher than that of random sequences (Fig. 6B). When
visualized, both natural and generated sequences display similar patterns of coding
organization (Fig. 6C), with sequences in close proximity typically found with the same
strand orientation; in bacteria, these closely linked groups of coding sequences typically
correspond to functionally tied gene clusters or operons. When using ESMFold to obtain
protein structure predictions corresponding to these coding sequences, almost all showed
predicted secondary structure and globular folds (Fig. 6, D and E, and fig. S28). Many
proteins also showed structural similarity to natural proteins involved in fundamental
molecular functions as annotated by gene ontology (GO) terms (Fig. 6, D and E). Across
all our generated sequences representing ~16 Mb, Evo was also able to generate 128 tRNA
sequences containing anticodons that correspond to all canonical amino acids (Fig. 6E).

We further observed that various genome-wide sequence patterns including the GC content,
dinucleotide frequencies, and certain codon usage patterns more closely resembled those of
natural genomes compared with random sequences (fig. S28, A to C). To assess the accuracy
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of species-specific prompting, we calculated tetranucleotide usage deviations (TUDs), a
strong indicator metric of phylogenetic relatedness (78). We found strong correlations
between species-specific generations and their corresponding natural reference sequences,
with TUDs sufficiently accurate to reconstruct natural phylogenetic relationships among
the generated sequences (Fig. 6, F and G). We also examined stop codon frequencies
across reading frames, a conserved genomic feature in prokaryotes (79). TGA and TAA
stop codons appeared most frequently, whereas TAG was least common, consistent with
previously observed patterns in prokaryotic genomes (Fig. 6H) (80). By contrast, random
sequences showed an unbiased proportion of stop codons. These analyses collectively
demonstrate that Evo’s generated sequences capture multiple layers of genomic signatures
characteristic of natural prokaryotic genomes.

However, there are characteristics of these genomes that are unnatural. The generated
sequences do not contain many highly conserved marker genes that typically indicate
complete genomes and, across the ~16 Mb of sample sequence, Evo generated only three
rRNAs (81). Many of the protein structure predictions are of low confidence, are biased
toward evolutionarily simpler a-helical secondary structures (82), and have limited structural
matches to any entry in a representative database of naturally occurring proteins (fig. S28E).

These results suggest that Evo can generate genome sequences containing plausible high-
level genomic organization at an unprecedented scale without extensive prompt engineering
or fine-tuning. These samples represent a “blurry image” of a genome that contains

key characteristics but lacks the finer-grained details typical of natural genomes. This is
consistent with findings involving generative models in other domains, such as natural
language or image generation. For example, directly sampling from a large natural language
model typically produces sequences that are grammatically correct yet locally biased toward
simpler sentence constructions and that are globally incoherent, especially at long lengths.
Promisingly, in these domains, algorithmic techniques have emerged to improve the quality
of generations compared with sampling from the pretrained model alone (83-85). The
baseline generation quality observed without any fine-tuning suggests that Evo is also
amenable to these techniques.

Discussion

Evo is a genomic foundation model trained on hundreds of billions of DNA tokens across
the evolutionary diversity of prokaryotic life, capable of prediction and generation tasks at
the scale of individual molecules, molecular complexes, systems, and even whole genomes.
Based on a state-of-the art hybrid model architecture, Evo enables single-nucleotide-
resolution language modeling at a context length of 131,072. We conducted the first
scaling laws analysis of DNA pretraining across several architectures, where we observed
StripedHyena outperforming several baseline architectures, including Transformers. Evo
accurately performed zero-shot prediction across diverse fitness or expression prediction
tasks on proteins, ncRNAs, or regulatory DNA that matches or outperforms specialized
models while also understanding how mutations to individual genes can affect broader
organismal fitness. As a multimodal generative model, we use Evo to generate CRISPR-
Cas proteins and their noncoding guide RNAs, multicomponent transposable systems,
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and megabase-long sequences that recapitulate the architecture of real genomes. We
experimentally validated the functional activity of EvoCas9-1 and Evo-generated 1S200
and 1S605 systems. We make open-access code and models for Evo publicly available at
https://github.com/evo-design/evo.

A model capable of genome-scale design has the potential to advance therapeutic

discovery, sustainability, and our understanding of fundamental biology but simultaneously
raises biosafety and ethical considerations. The Global Alliance for Genomics and

Health (GA4GH) (86) has developed principles for the oversight of genetic engineering
technologies and could provide a robust foundation for transparency, accountability, and
shared responsibility. Such a framework is essential to foster international cooperation

that benefits all humanity. A proactive discussion involving the scientific community,
security experts, and policy-makers is imperative to prevent misuse and to promote effective
strategies for mitigating existing and emerging threats. \We open-source the model to
promote transparency and begin a dialogue with the broader scientific community, and we
apply the precaution of excluding eukaryaotic viruses from our pretraining dataset. We further
include an extended supplementary discussion on safety and ethical considerations (see
supplementary materials). Clear, comprehensive guidelines that delineate ethical practices
for the field are required for the responsible development and use of genome-scale language
models.

Despite the notable capabilities of this first-generation DNA foundation model, a number
of technical limitations and challenges remain. We pretrained Evo on a dataset of 300
billion prokaryotic tokens, which represents a miniscule portion of petabytes of publicly
available genomic data. Because our model is trained only on prokaryotic data, our ability to
predict functional effects of mutations on human protein fitness is limited. Natural language
models often struggle to maintain coherent and diverse generation over long sequences, and
Evo can demonstrate similar properties. For example, we observed that many CRISPR-Cas
generations had clearly problematic sequences, such as missing or truncated cas genes. At
the genome-scale, Evo generates megabase-long sequences that demonstrate a high-level
understanding of genome organization, but it struggles to include key marker genes, such
as full sets of rRNAs. Improvement on long-range prediction or generation tasks will
require both methodological improvements and biologically motivated problem selection
and evaluation. These limitations mirror the constraints of natural language models, which
have been improved over time with increased scale, labeled data, prompt engineering, and
alignment with human preferences (39, 83-85, 87). We expect a similar trajectory for
models of DNA.

We expect that Evo will benefit from additional scale, longer context length, and more
diverse pretraining data. Given the success of language model—-guided directed evolution

of proteins (88, 89), genomic language models may also help guide the directed evolution
of multigene systems. The coevolutionary information contained in these models could
improve molecular structure prediction in a multigene context (5, 47). With better
conditioning or prompt engineering, Evo could form the basis of a next-generation sequence
search algorithm by enabling metagenomic mining at a relational or a semantic level rather
than extracting literal sequences from existing organisms. The incorporation of eukaryotic
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genomes into Evo will need to consider the far higher complexity of these genomes and
require substantial resource investment in engineering, compute, and safety-related model
alignment. Combined with advances in large-scale genome modification (90), Evo expands
the scope of biological engineering and design to the scale of whole genomes.

Materials and methods

StripedHyena architecture

Evo is based on StripedHyena (34), a state-of-the-art hybrid model architecture for sequence
modeling. Evo comprises 32 blocks at a model width of 4096 dimensions. Each block
contains a sequence mixing layer, tasked with processing information along the sequence
dimension, and a channel mixing layer, focused on processing information along the model
width dimension. In the sequence mixing layers, Evo uses 29 hyena layers, interleaved

with 3 rotary (29) self-attention layers at equal intervals. We parametrize convolutions in
hyena operators using the modal canonical form described in reference (28). For the channel
mixing layers, Evo uses gated linear units (91, 92). Evo further normalizes the inputs to each
layer using root mean square layer normalization (93).

Hyena layers

Hyena (34) is a sequence mixer implementing an input-dependent (data-controlled) operator
via a composition of short convolutions, long convolutions and data-controlled gating

(Fig. 1B). Hyena belongs to the class of deep signal processing primitives (28, 34, 94),
designed for efficient, input-dependent computation in large-scale sequence models. Input
dependence allows an architecture built with deep signal processing layers to adapt such
computation based on the input, unlocking in-context learning (95, 96). Hyena relies on
structured operators compatible with fast multiplication algorithms, which can be evaluated
in subquadratic time, e.g., via Fast Fourier Transforms or parallel scans. The operators are
parametrized implicitly, i.e., by learning a map from positional embeddings, or the input, to
the parameters of the operator itself. Typical choices of implicit parametrizations are linear
projections, hypernetworks (34, 97) or linear state-space models in modal or companion
form (27, 28, 98-100).

Self-attention layers

Self-attention is the core sequence mixing operator of Transformer models. Self-attention
constructs the output sequence as a weighted combination of the input elements, where the
weights themselves are input-dependent. Given an input sequence, the forward pass of a
self-attention layer is

(Q.K, V)~ AQ,K)V
AQ.K) = softmax(QKT)

where queries Q € RE X P, keys K € RL* P, and values V e RE % P are obtained through

a linear transformation of an input matrix U € RX P, e.g., V.= UW,, and L denotes the
sequence length and D denotes the hidden dimension. The softmax is applied to rows of A.
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The query, key, value terminology is borrowed from databases, where keys are used to index
stored values. Conceptually, the values of the attention matrix A(Q, K) measure the similarity
between queries and keys akin to matching queries to keys in a database.

Positional embeddings

By itself, the self-attention operator does not have any notion of the different positions of the
input embeddings in an input sequence. For this reason, it is generally supplemented with a
positional encoding mechanism. The attention layers of StripedHyena use a rotary position
embedding mechanism (RoPE) to model relative positional information (29). Position
information is encoded by rotating the query and key token vectors of the attention operator.
Specifically, RoPE implements a rotation to queries and keys, with the rotation magnitude
defined as a function of their relative position in the sequence.

To extend the context window length from 8k to 131k during our second pretraining stage,
we apply linear position interpolation to extend the rotary position embedding applied in the
first pretraining stage at 8k sequence length [for details, see (19)]. Interpolating enables the
model to continue leveraging its learned representations when applied to longer sequences
than it was originally trained on. We also tested other position interpolation methods but
found that they performed slightly worse than linear interpolation on our data.

Tokenization

In language modeling, tokens describe the smallest unit of semantic information that is

used by a model to process language. For example, tokens can indicate individual words

of a vocabulary or even lower-level semantic information such as individual characters.
Tokenization describes the process of mapping these semantic language units, such as words
or characters, to specific integer values, each indicating an entry in a lookup table. These
integer values are mapped by embedding layers to vectors, which are then processed by

the model in an end-to-end fashion. Evo tokenizes DNA sequences at single-nucleotide
resolution, using the UTF-8 encoding implemented in Python. During pretraining, Evo

uses an effective vocabulary of four tokens, one per base, from a total vocabulary of 512
characters, which allows for vocabulary expansion during subsequent downstream tasks. We
use the additional characters to enable prompting with special tokens during generation with
fine-tuned models.

OpenGenome datasets

The OpenGenome pretraining dataset (table S2) was compiled from three different sources:
(i) bacterial and archaeal genomes from the Genome Taxonomy Database (GTDB) v214.1
(77), (i) curated prokaryotic viruses from the IMG/VR v4 database (36), and (iii) plasmid
sequences from the IMG/PR database (37). For GTDB, representative genomes for each
species were retained to reduce data redundancy.

For IMG/PR, only one representative per plasmid taxonomic unit (PTU) was kept.

For IMG/VR, sequences were retained only if they were labeled as “high-confidence”
according to the database metadata, and only one representative per viral operational
taxonomic unit (vOTU) was kept. These sequences were further curated to remove potential
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eukaryotic viruses by keeping only sequences whose assigned taxonomic classification
was found within a prokaryotic host at least twice. Next, the remaining taxonomic
classifications were inspected and further filtered to exclude all viruses assigned to

any of 19 families (Adenoviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae,
Hantaviridae, Hepadnaviridae, Herpesviridae, Orthomyxoviridae, Papillomaviridae,
Paramyxoviridae, Picornaviridae, Poxviridae, Reoviridae, Retroviridae, Rhabdoviridae,
Circoviridae, Geminiviridae, Picobirnaviridae) or 12 orders (Amarillovirales, Durnavirales,
Geplafuvirales, Herpesvirales, Lefavirales, Ortervirales, Orthopolintovirales, Piccovirales,
Picornavirales, Priklausovirales, Cirlivirales, and Mulpavirales). Next, viruses with poor
taxonomic specificity were excluded, including those with no assigned realm at all, and
those only assigned up to the level of r:Riboviria, r:Monodnaviria, k:Heunggongvirae,
k:Bamfordvirae, p:Preplasmiviricota, p:Cressdnaviricota, p:Pisuviricota, or c:Tectiliviricetes.

The CRISPR-Cas and 15200/1S605 fine-tuning datasets were compiled from a previously
described custom database gathered from multiple sources (101). Briefly, this custom
database includes genomic and metagenomic sequence data from NCBI RefSeq (102),
UHGG (103), JGI IMG (104), the Gut Phage Database (105), the Human Gastrointestinal
Bacteria Genome Collection (106), MGnify (107), Youngblut ef a/. animal gut metagenomes
(108), MGRAST (109), and Tara Oceans samples (110).

To compile the CRISPR-Cas genomic loci, this custom database was searched using profile
HMM models and the HMMER software package to identify Cas9, Cas12, and Cas13
sequences (111). Several pHMMs were collected from the CRISPRCasTyper annotation

tool (112), and a recent computational survey of TnpB and Cas12 (113). Custom Cas13
pHMMs that were previously generated by our group were also used (101). These models
were searched against our large custom database using hmmsearch and the parameter “-Z
1000000.” All hits that met E<1x 1076 with at least one pHMM were kept. Only hits that
were at least 300 amino acids long and covered over 80% of the pHMM were kept. For all
hits to a given pHMM, only proteins that were within the middle 99% of the size distribution
were kept. Corresponding genetic loci were extracted from the database, including 8192
nucleotides of flanking sequence on both the 5" and 3 ends of the Cas effector CDS.

The tool minced was used to identify CRISPR arrays in the flanking sequences using the
parameters “-minRL 18 -maxRL 50 -minSL 18 -maxRL 50.” Only loci with both a predicted
Cas effector and a CRISPR array were retained. The final CRISPR-Cas loci were extracted
by first identifying the subsequence that covered both the Cas effector and the CRISPR
array, and then including additional flanking nucleotides on both sides up until 8192 were
retained for fine-tuning purposes. Only 1 locus per 90% identity Cas cluster was retained,
clustered using the MMseqs2 command “easy-cluster --cluster-reassign —cluster-mode 0
--cov-mode 0 -¢ 0.7 --min-seq-id 0.9” (114).

To compile the 1S200/1S605 loci, this custom database was searched using a Pfam Y1 HUH
Transposase pHMM model (Pfam 1D: PF01797). This pHMM identifies 1S200/I1S605 TnpA
proteins. All matches meeting E value < 1 x 1076 that covered at least 80% of the pHMM
and were less than 400 amino acids were kept. 8196 nucleotides of CDS-flanking sequence
was then extracted for each hit. Loci that also contained TnpB coding sequences were
identified using previously compiled pHMMs (113), and a custom pHMM compiled using
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jackhmmer and the ISDra2 TnpB as an initial query against the MGnify protein database,
followed by a MAFFT alignment of hits and pHMM construction with HMMER (107, 111,
115). Hits that were between 250 and 650 amino acids in length were retained, and only
loci where the distance between the beginning and end of the TnpA and TnpB sequences
was less than 2500 nucleotides were retained. For TnpA-only loci, up to 300 nucleotides of
flanking sequence were added to either side of the CDS. For TnpA+TnpB loci, up to 300
nucleotides were added to the TnpA side of the 1S200/1S605 element, while 600 nucleotides
were added to the TnpB side (to account for the presence of an wRNA). Only 1 locus per
90% identity TnpA cluster was retained.

Training procedure

Dataloading

We pretrain Evo in two stages, first with a context size of 8k tokens, followed by a

second stage where we increase the context size to 131k tokens. Multistage sequence length
pretraining has been shown to reduce the overall number of compute hours required to

train long context models (116). The pretraining was distributed across GPUs using pipeline
parallel with 2 stages (pipeline parallel value of 2), where each stage processes a part of

the training pipeline (depthwise). This reduces the memory footprint while allowing us to
maximize throughput during training. In total, we trained Evo in stage 1 on 64 NVIDIA
H100 GPUs for 2 weeks and on 128 NVIDIA A100 GPUs in stage 2 for an additional

2 weeks. In total, Evo was trained on ~340B tokens, using ~2 x 1022 FLOPs. Because
OpenGenome contains 300B tokens, this equates to 1.13 epochs, where data-loading beyond
300B tokens would consist of repeated tokens that are uniformly randomly sampled in a
different order than in the first epoch. For specific generation tasks, we further fine-tuned
Evo, as described in the following sections. We also report long context perplexity scaling of
Evo 131k in fig. S2. Additional details on training settings are provided in table S1.

We use sequence packing to generate training samples. A sequence of the specified context
length is sampled at random from the entire training dataset, where the sampling is done
without replacement over an entire training epoch. Because some DNA sequences are
shorter than the context length, multiple DNA sequences can be appended until the context
length (8k or 131K) is reached; likewise, because some DNA sequences are longer than the
context length, a training sample could consist of a genomic subsequence. Individual DNA
sequences at the level of assembled contigs are separated by end-of-sequence (EOS) tokens.
Depending on the dataset or task, we additionally prepend special token(s) to condition the
model, for example, to steer its generations through prompting.

Hyperparameter tuning and direct model comparisons

Before training Evo, we carried out hyperparameter tuning on partially trained 7B
Transformer++ models and compared to similarly sized Hyena and StripedHyena models.
We swept batch size, learning rate and other architectural details. Even when controlling for
training iterations instead of compute (FLOPSs), Transformer++ performance is substantially
worse than StripedHyena (fig. S4). Out of all the baselines, we find that StripedHyena
achieves the overall lowest perplexity at the 7B scale, consistent with the scaling rates
presented in Fig. 1G.
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We compare different classes of architectures via a compute-optimal protocol, aimed at
evaluating results on the compute-optimal frontier. Compute-optimal analysis studies the
best performance of a pretraining run given a compute budget, typically indicated in floating
point operations (FLOPS), and achieved by optimally allocating portions of the compute
budget to model size and dataset size. Architecture types differ in compute efficiency, as
well as how they allocate this compute budget.

We started by tuning hyperparameters such as learning rate and batch size for Transformer+
+ with a grid search, then used the same values for all architectures except in settings
where numerical instability was observed. To address instability, we lowered the learning
rate gradually and repeated the experiment until convergence. In all experiments, we
trained models with 8192 tokens in context length. For each compute budget defined by

a total FLOP count, we varied the model sizes (6 million to 1 billion parameters) and the
number of tokens trained. To measure model performance, we use the perplexity metric,
which indicates how well an autoregressive model performs at predicting the next token

of a sequence and is highly correlated with performance on downstream tasks. A lower
perplexity value indicates better performance.

Scaling laws procedure

We provide a summary of the steps involved in our scaling laws analysis. Quantifying
scaling rates allows us to predict performance as model size, dataset size, and compute grow.

1. Define a set of compute budgets to study. We use 8 x 1018, 2 x 1019, 4 x 1019,
and 8 x 10%° FLOPs.

2. Calculate the FLOPs (floating point operations) required to process a fixed input
size for the model architecture of interest (i.e., the “cost” of using the model).

3. Identify the model’s compute-optimal allocation for each compute budget: (a)
Select a wide range of possible model sizes and calculate for each model size the
corresponding number of tokens that need to be processed to reach the compute
budget. Other hyperparameters are chosen according to table S3. We generally
observe minor changes to model topology (depth, width) to only minimally
affect perplexity, aligning our results with the findings presented by (39) for
Transformers. (b) Train a model of each size and record its performance (e.g., in
terms of perplexity). (c) ldentify the optimal compute allocation: Following prior
analysis, we fit a second-order polynomial as a function from (log) model size
to perplexity, and extract obtained the compute-optimal point as its minimum.
The compute-optimal point identifies the optimal allocation of model size and
training tokens at the given compute budget.

After deriving the compute-optimal scaling rates (Fig. 1G), we compare architectures

and compute optimal allocation of tokens and model size (fig. S5). In fig. S3, we also
show rates for compute-suboptimal model sizes by architecture. We quantify the effect on
perplexity scaling caused by a suboptimal allocation of compute budget to model or dataset
size (e.g., training a smaller model for more tokens). We estimate the compute-optimal
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model size for each compute budget, then reduce it by a percentage (the offset). The
corresponding perplexity is obtained via the 1soFLOP curves (Fig. 1F). Transformer++
perplexity scaling rapidly degrades outside the compute-optimal frontier, in contrast to
Hyena and StripedHyena. Architecture details of models trained for our scaling law analysis
provided in table S3.

Transformer++

Hyena

Mamba

We use a modern decoder-only Transformer architecture with rotary position embeddings
(29), pre-norm with root mean square layer normalization, and SwiGLU as channel mixer.
The inner width of the SwWiGLU is 4/3 the model width. We experimented with grouped-
query attention (GQA) (117) and found minimal differences in final loss, suggesting the
technique may be suited to DNA sequence modeling, to further reduce memory footprint
during inference. All scaling results with Transformer++ do not use GQA.

The Hyena baseline is designed with the same architecture improvements applied to the
Transformer++ model. We replace all multi-headed self-attention layers with hyena layers
and use a modal canonical parametrization for the long convolution, with state dimension 8.

We use the implementation of Mamba as provided by the public repository (https://
github.com/state-spaces/mamba).

Generating DNA sequences with Evo

We sample sequences from Evo using standard top-4 and temperature-based methods for
autoregressive models. Evo benefits from the fast recurrent mode of hyena layers, enabling
lower latency and memory cost (24, 28). In particular, we use the recurrent form of the
modal canonical form as shown in (28), first processing the prompt with a Fast Fourier
Transform modified to return output and state. We use a cache for the states of short
convolutions. Evo can generate sequences of up to 650k nucleotides on a single 80GB GPU,
in contrast to other long context methods for dense Transformers requiring a larger number
of nodes. We use standard kv-caching for rotary attention layers in StripedHyena.

Controllable generation

We follow standard language model prompting techniques that condition generation on a
given prefix. For class-conditional generation we prompt with a single token, representing
the desired class, or genomic sequence type (e.g., CRISPR-Cas system, 1S200/605). The
model can also be steered by prompting on desired DNA subsequences.

Protein function prediction

We used DMS datasets to benchmark protein and nucleotide language models in their
ability to predict mutational effects on protein function. In all cases, we used the nucleotide
sequences reported by the original study authors. We limited our analysis to prokaryotic and
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human proteins, where notably the Evo training dataset only contains prokaryotic protein
sequences.

To compile the nucleotide information from prokaryotic DMS studies, we used all the
datasets listed as “prokaryote” in the ProteinGym benchmark for which we could also find
nucleotide-level information reported by the original study authors. This resulted in nine
studies: a B-lactamase DMS by Firnberg et a/. (118), a p-lactamase DMS by Jacquier et al.
(119), a CcdB DMS (120), a multiprotein thermostability dataset (121), an IF-1 DMS (122),
an Rnc DMS (123), an Haelll DMS (124), a VIM-2 DMS (125), and an APH(3")II DMS
(126).

To compile the nucleotide information from human DMS studies, we narrowed the scope of
the set of datasets used in our human benchmark to the human datasets used in reference
(45) to benchmark mutational effect predictors. We also limited our analysis to studies
where we could also find nucleotide-level information reported by the original study authors.
This resulted in six studies:a CBS DMS (127), a GDI1 DMS (128), a PDE3A DMS (129), a
P53 DMS by Kotler et al. (130), a P53 DMS by Giacomelli ef a/. (131), and a BRCA1 DMS
(132).

We compared Evo (pretrained with 8k context) to two genomic DNA language models:
GenSLM 2.5B, which was trained with a codon vocabulary on sets of genes from
prokaryotic organisms (15) and Nucleotide Transformer 2B5_multi_species, which was
trained with a 6-mer nucleotide vocabulary on genome sequences from prokaryotic and
eukaryotic species (16). We also compared Evo to several protein language models trained
on nonredundant, generic corpora of protein sequences: CARP 640M (46), ESM-1v (41),
ESM-2 650M, ESM-2 3B (47), ProGen2 large, and ProGen 2 xlarge (48). For studies that
provide models with multiple parameter sizes, we selected the largest size on which we
could perform inference with an 80 GB NVIDIA H100 GPU on sequences from all our
benchmarked studies without exceeding GPU memory. We also included ESM-2 650M
and ProGen2 large given that these models have sometimes shown better performance at
function prediction than larger versions of these models (44).

To compare nucleotide and protein language models, we used all unique nucleotide
sequences and their corresponding fitness values as reported by the original studies.
Occasionally, we observed that the fitness values reported for nucleotide sequences differed
from fitness values reported for protein sequences; in such cases, we used the fitness
values reported for nucleotide sequences and evaluated the protein language models using
the translated sequence. In cases where there are multiple nucleotide sequences for a

single protein sequence due to different codon usage, the nucleotide language models

were evaluated on each unique nucleotide sequence and the protein language models were
evaluated on the coding sequence corresponding to each unique nucleotide sequence; this
means that a protein language model could have been evaluated on the same protein
sequence multiple times for a given study. Some studies report fitness values for mutations
that involve stop codons; in such cases, we evaluated the nucleotide language model on the
sequence containing the stop codon and excluded these examples from the protein language
model benchmark.
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We computed the Spearman correlation between the experimental fitness values and the
sequence likelihood (for autoregressive language models) or the sequence pseudolikelihood
(for masked language models). When using Evo sequence likelihoods to score sequences,
we also prepend the EOS token (used in the pretraining data to delimit different sequences)
to the full sequence, which we find empirically to boost zero-shot performance. We assessed
statistical significance of the Spearman correlation coefficient under a null hypothesis that
the correlation coefficient is drawn from a #distribution with A/— 2 degrees of freedom,
where Nis the number of samples over which we compute the correlation. We used this

null distribution to compute a P value based on the observed correlation. We used the scipy
Python library (https://scipy.org/) to compute these values.

ncRNA function prediction

We used DMS datasets to benchmark protein and nucleotide language models based on their
ability to predict mutational effects on ncRNA function. Given that no well-established
benchmark datasets exist for ncRNA function prediction, we curated the literature for
examples of ncRNA mutational scanning experiments. We obtained the following datasets:

a ribozyme DMS by Kobori ef a/. (133), a ribozyme DMS by Andreasson et al. (134), a
tRNA DMS by Domingo et al. (135), a tRNA DMS by Guy et a/. (136), a ribozyme DMS by
Hayden et al. (137), a ribozyme DMS by Pitt ef a/. (138), and a rRNA mutagenesis study by
Zhang et al. (51).

We compared Evo (pretrained with 8k context) to the nucleotide language models described
above as well as RNA-FM, which was trained on a single-nucleotide vocabulary on short
ncRNA sequences (50). Like the methods applied to protein coding sequences above, we
compiled experimental fitness values for each ncRNA variant. We computed the Spearman
correlation between the experimental fitness values and the sequence likelihood (for
autoregressive language models) or the sequence pseudolikelihood (for masked language
models). When scoring sequences with Evo sequence likelihood, we also prepend the EOS
token to each sequence. Correlation coefficients and associated P values were computed as
described above.

Gene expression prediction from regulatory DNA

From LaFleur et al. (52), we obtained a dataset of 5193 promoter sequences that we
randomly split into 4673 promoters in the training dataset and 520 in the validation dataset
following the train-validation split sizes used in the original study. We also obtained another
5391 promoter sequences from the same study, which we used as a second validation
dataset. We also obtained 4350 promoter sequences from Hossain et al. (54), 10,898
promoter sequences from Urtecho et a/. (53), and 1493 promoter sequences from Yu et

al. (55), which we used as held-out test sets. The datasets were further processed to remove
the background DNA sequence by identifying the subsequence with the maximum predicted
transcription initiation rate using the method of LaFleur et a/. (52). We also obtained a
dataset of 12,243 promoter-RBS sequences from Kosuri et al. (56), which we used as

an additional test set. All promoter sequences had associated activity labels related to

gene expression and the data from Kosuri et al. (56) quantifies both mRNA and protein
expression. The supervised tasks described below were all trained only on data generated by
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LaFleur et al. (52) and then evaluated based on their ability to make predictions on data from
other studies.

For the promoter activity prediction tasks, we computed the predictive performance of
promoter GC content and the zero-shot sequence likelihoods from Evo and from GenSLM
on the four test datasets. When scoring sequences with Evo sequence likelihood, we
prepended the EOS token to each sequence. We evaluated the performance of Promoter
Calculator (52) on the four test datasets, using the minimum predicted dG_total across the
forward sequence as the prediction score.

We additionally trained supervised models on the training set of 4673 promoters and
associated activity values, using the two validation datasets described above to guide model
development. These supervised models used either one-hot-encoded sequence embeddings
or neural embeddings from Evo. The neural embeddings leveraged the output of the last
hidden hyena layer, which takes the form of a matrix with a dimension of the sequence
length x the hidden dimension (4096). On these embeddings, we trained either a ridge
regression model or a convolutional neural network (CNN). To implement ridge regression,
we used the RidgeCV module from scikit-learn with default values, which identifies the

a hyperparameter used to weight the #,-regularization term. As input features for ridge
regression, we additionally averaged the Evo embedding over the sequence dimension to
produce an embedding vector of length 4096 for each sequence

The CNN consists of two convolutional layers, each followed by a ReLLU activation
function. The first convolutional layer starts with an input embedding (where the sequence
dimension was suffix-padded with zeros up to length 256) with 4096 channels, using a
kernel size of 8 and a stride of 1, with “same” padding to preserve the input sequence length.
The second convolutional layer takes the output from the first layer and applies similar
operations. Following the convolutional layers, a max pooling layer with a kernel size of

7 and a stride of 1 is applied, with padding adjusted to maintain the sequence length. The
pooled output is then flattened into a two-dimensional tensor, which is passed through a
fully connected layer that reduces the data to 128 channels. A final fully connected layer
further reduces the data to a single output. The forward pass through the network involves
applying the ReLU activation after each convolutional and fully connected layer (except for
the final output layer). The model was trained for 10 epochs with the Adam optimizer, a
learning rate of 0.0001, B, = 0.9, and B, = 0.999.

For the protein expression prediction task, we used the data linking RBS sequences

to protein expression from Kosuri et al. (56). We evaluated the zero-shot predictive
performance of the sequence likelihoods from Evo when only providing the model with

the sequence of the promoter, the sequence of the RBS, or the sequence of the promoter-
RBS pair. When scoring sequences with Evo sequence likelihood, we also prepend the

EOS token to each sequence. We also evaluated the predictive performance of the GC
content of the promoter-RBS concatenated sequence and the zero-shot likelihoods from
GenSLM. We also evaluated the performance of RBS Calculator (57, 58) by providing the
online webtool (https://salislab.net/software/predict_rbs_calculator) with a simulated mRNA
sequence created by concatenating the RBS sequence and the sequence of sfGFP used
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by Kosuri et al. (56). To ensure that the Spearman correlation is comparable across these
settings, we computed the correlation over all 12,243 examples (which involves duplicating
sequences in the promoter-alone or RBS-alone settings).

CRISPR-Cas fine-tuning and generation

To generate CRISPR-Cas systems, we fine-tuned Evo by continuing to train the 8k-context
pretrained model on a dataset of CRISPR-Cas sequences, which was curated as described
above. We retained most of the hyperparameters used during pretraining but set the batch
size to 524,288 tokens and an initial learning rate of 0.00009698, which was the learning
rate at the final step of pretraining. During fine-tuning, we prepended a single class token
corresponding to the type of Cas protein (Cas9, Casl12, or Cas13), which was identified as
described in the OpenGenome datasets section; this class token was then followed by the
nucleotide sequence. We also modified the dataloader such that each sample provided to the
model during training would begin with the first token of the CRISPR-Cas sequence and,
if a sequence was shorter than the context length, we padded the sequence to the remaining
context (where padding did not contribute to the loss computation). This ensured that each
training sample would correspond to a single CRISPR-Cas sequence. We fine-tuned the
model for ~10 epochs.

We prompted the model with a given class token and one additional character for each
sequence generation. For example, to prompt for Cas9 sequences, we used either “” or
“*A” as the Cas9 prompt, since we found that, in some instances, adding an additional
random nucleotide character would improve the quality of generations. We performed
standard temperature-based and top- & autoregressive sampling (139). In our generations,
we performed an exhaustive sweep consisting of temperatures of 0.1, 0.3, 0.5 and top-k
values of 2 and 4. All sampled sequences were then combined and used for downstream
extraction and analysis of candidate CRISPR systems.

CRISPR-Cas sampling evaluation

The in silico Cas evaluation pipeline consisted of an initial open reading frame (ORF) search
using Prodigal (140) and subsequent profiling of the extracted ORFs using hidden markov
model (HMM) profiles for each Cas subtype. Sampled sequences with a positive pHMM hit
with an E value under 1 x 1073 and a sequence length above a given threshold were further
analyzed using the MinCED package to identify possible CRISPR arrays (141). Generations
with Cas ORFs and CRISPR arrays were aligned against Cas ORF sequences in the training
data with MMSeqs2 to identify the closest sequences in the training data in sequence
identity (114). We then performed MAFFT alignments with nearest hits to recompute
alignments. MAFFT alignments were trimmed to 80% of the full alignment length centered
at the middle of the alignment and end-gaps were removed before determining an estimate
for percent identity to the closest item in the training data (115). To assess generation
quality, we computed a “degeneracy score” as the percent coverage of a sequence by

any repetitive substring longer than a cutoff value. For example, the degeneracy score of
“ATAGAAAA-AATAGGGGGAGA” with a cutoff of 4 would be 0.55.
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To select candidates for experimental validation, Cas9 generations with an ORF sequence
identity higher than 90% to a training sequence were first filtered out. Remaining
generations were then scored based on the distribution of mismatches in the pairwise
alignments between the candidate sequence and its closest hit in the training dataset.
Sequences with alignments containing an even distribution of mismatches across the ORF
sequence were scored highly and those with an uneven distribution (e.g., concentration of
mismatches or gaps at the N and C termini) were down-weighted. The Cas9 ORFs from

the top-ranking 2000 generations were folded with AlphaFold2 (5). From the predicted
structures, generations were filtered based on pLDDT, radius of gyration, the presence of a
detected tracrRNA sequence, and the presence of RuvC and HNH domains in the Cas9 ORF.
The Biotite package was used to calculate radius of gyration (142). CRISPRtracrRNA was
used to extract potential tracrRNA sequences from candidate generations and cofolded with
the extracted crRNA sequence using RNAmultifold (143, 144). The final 11 Evo-generated
Cas9 candidates were selected from this subset through manual inspection of predicted Cas9
structure and predicted sgRNA secondary structure.

CRISPR-Cas in vitro cleavage

For an initial screen of 11 selected Cas9 candidates, we expressed the protein and SgRNA

in vitro using the PURExpress (IVTT) kit (NEB E6800S) and the HiScribe T7 High

Yield RNA Synthesis (IVT) kit (NEB E2050S), respectively, following the manufacturer’s
recommendations. The sgRNA IVT product was column-purified using the 500 ug Monarch
RNA Cleanup kit (NEB T2050L) before use; the in vitro expressed protein was not purified
before use. The IVT and IVTT products were performed in 20 L reactions with 2 pL

of expressed protein, 2 uL of gRNA, 2 uL of DNA target at a final concentration of 1

nM, and 2 uL of NEBuffer r3.1 (NEB B6003S) at a final concentration of 1X. Cleavage
reactions were incubated at 37°C for 20 hours and quenched with a final concentration of
50 mM EDTA (Invitrogen no. 15575020) followed by 2 uL of RNase A treatment (NEB
T3018L) for 30 min at 37°C and 2 pL of Proteinase K treatment (NEB P8107S) for 15 min
at 65°C. Cleavage products were then column-purified using a QlAquick PCR Purification
kit (Qiagen no. 28104) and stored at 4°C before performing gel electrophoresis on Novex

4 to 12% TBE gels (Invitrogen EC62352B0OX) at a constant voltage of 200 V. Gels were
stained with SYBR Gold Nucleic Acid Gel Stain for 5 min at a 1X concentration (Invitrogen
S11494).

SpCas9 and EvoCas9-1 was recombinantly expressed in the £. coli strain OverExpress
C43(DE3) (Sigma Aldrich CMC0019) and purified via His-tag and size-exclusion
chromatography using the procedure described in the section “CRISPR-Cas recombinant
expression and purification.” 2 uL of commercially available SpCas9 (NEB M0386T),
purified SpCas9, or purified EvoCas9-1 were incubated with 2 UL of either a targeting
or nontargeting gRNA and 2 pL of a DNA target at a 10:10:1 molar ratio of
Cas9:sgRNA:target. A final concentration of 1 nM was used for the target and final
concentrations of 10 nM for both the Cas9 protein and sgRNA. Cleavage reactions were
performed in 20 L volumes with 2 uL of NEBuffer r3.1 (NEB B6003S) used at a

final concentration of 1X. Reactions were incubated at 37°C for up to 12 hours with
timepoints collected at 5 min, 15 min, 1 hour, 3 hours, and 12 hours. Separate and

Science. Author manuscript; available in PMC 2025 May 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Nguyen et al.

Page 27

independent reactions were used for each timepoint and condition and quenched with a

final concentration of 50 mM EDTA (Invitrogen no. 15575020) before treating with 2

pL of RNase A (NEB T3018L) at 37°C for 10 min and 2 pL of Proteinase K (NEB

P8107S) at 65°C for 15 min. Cleavage products were column-purified using a QIAquick
PCR Purification kit (Qiagen no. 28104) before performing gel electrophoresis on a Novex
4 to 12% TBE gel (Invitrogen EC62352BOX) at a constant voltage of 200 V. Gels were
stained with SYBR Gold Nucleic Acid Gel Stain for 5 min at a 1X concentration (Invitrogen
S11494).

CRISPR-Cas recombinant expression and purification

The sequence encoding the protein of interest was subcloned into a protein expression
vector containing an N-terminal 8xHis tag followed by a TEV protease cleavage site

using Gibson assembly. The protein was expressed in £. coli strain OverExpressC43(DE3)
(MilliporeSigma) grown in Terrific Broth at 18°C for 16 hours after induction with 0.4 mM
IPTG. The protein was purified by sequential affinity and size exclusion chromatography
steps. Cells were centrifuged at 4000 xg, 4°C for 15 min and resuspended in lysis buffer
(50mM Tris—HCI pH 7.5, 0.5 M NaCl, 2 mM MgCI2, 10 mM imidazole, 10% glycerol)
supplemented with EDTA-free protease inhibitor tablets (Roche) and 1 mg/mL lysozyme
(ThermoFisher). Cell suspensions were then disrupted using a sonicator (Fisher Scientific).
Crude lysate was subsequently ultracentrifuged at 40,000 xg, 4°C for 45 min using a 70Ti
rotor in a XE-90 ultra-centrifuge (Beckman Coulter). Clarified lysate was then filtered
through a 0.22 um filter and loaded onto a 5 UL HisTrapFF column (Cytiva) using a
peristaltic pump.

After the entire volume of the clarified lysate was flowed through the HisTrapFF affinity
column, the column was washed extensively with Wash Buffer (50 mM Tris—HCI pH 7.5,
0.5 M NaCl, 30 mM imidazole, and 10% glycerol). The HisTrapFF column was then
connected to an AktaPure system (Cytiva) and eluted using a linear gradient of Elution
Buffer (50mM Tris—HCI pH 7.5, 0.5 M NaCl, 0.5 M imidazole, and 10% glycerol) in 1.5
uL fractions. Fractions corresponding to the peak identified to contain the protein of interest
were pooled and concentrated using an Amicon 30 kDa MWCO filter (MilliporeSigma)
before overnight cleavage of the 8xHis tag using TEV protease. Following TEV protease
cleavage, the solution was applied to a second HisTrapFF column to remove the cleaved tag
from the preparation. The column was washed with 15 uL. Wash Buffer and the flow through
was collected for concentration using an Amicon 30 kDa MWCO filter (MilliporeSigma).
The concentrated protein was then applied to a Superdex200 10/300 column for purification
by size exclusion chromatography, with an isocratic elution program using SEC Buffer (20
mM Tris—=HCI pH 7.5, 0.5M NaCl, and 1 mM DTT, 10% glycerol). Eluted protein was
concentrated again using an Amicon 30 kDa MWCO filter (MilliporeSigma), flash frozen in
liquid nitrogen andstoredat—80°C.

1S200/1S605 fine-tuning and generation

To generate 15200 and 1S605 systems, we fine-tuned Evo by continuing to train the 8k-
context pretrained model on a dataset of 1S200/1S605 sequences, which was curated as
described above. We retained most of the hyperparameters used during pretraining but set
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the batch size to 524,288 tokens and an initial learning rate of 0.00009698, which was the
learning rate at the final step of pretraining. During pretraining, we prepended a start token
to each sequence labeling whether the system corresponded to an 1S200 or an 1S605 system.
We used the token corresponding to the character “~” as the 1S200 prompt and the token
corresponding to the character “#” as the 1S605 prompt. We also modified the data loader
such that each sample provided to the model during training would begin with the first
token of the 1S200/1S605 sequence and, if a sequence was shorter than the context length,
we padded the sequence to the remaining context (where padding did not contribute to the
loss computation), similar to the strategy described for CRISPR-Cas9 systems above. We
fine-tuned the model for ~10 epochs.

We prompted the model with a special prompting token for each sequence generation.

We performed standard temperature-based and top-« autoregressive sampling (139). In our
generations, we performed an exhaustive sweep consisting of temperatures of 0.1, 0.3,
0.5,0.7, 0.9, 1.0, and 1.3, and top-k values of 2 and 4. Sampled sequences were further
processed by splitting on the first whitespace character, keeping the first non-whitespace
sequence, and only keeping generated sequences that were composed entirely of valid
nucleotides.

We analyzed generated sequences using Prodigal to identify coding sequences and proteins
(140), followed by hmmsearch (-Z 1000000) using pHMMs to identify TnpA and TnpB
sequences (111), and cmsearch (-Z 4) using covariance models developed in a previous
publication (66) to identify candidate WRNAs (145). Candidate TnpA sequences were kept
if they had an E value < 1 x 1073 to the pHMM and if they covered at least 50% of the
pHMM. Candidate TnpB sequences were kept if they had an E value < 1x 1073 to at least
one pHMM, if they covered at least 50% of the pHMM, and if they were between 300 and
600 amino acids in length.

Predicted TnpA and TnpB protein sequences were aligned back to proteins in the training
set using MMseqs2 (114). The top three hits for each protein were extracted and separately
aligned using the MAFFT default algorithm to estimate the amino acid identity across the
full lengths of the two sequences (115). To account for different start codons and to generate
a more conservative percentage identity estimate, these alignments were trimmed to the
middle 80% of each sequence, end gaps were trimmed, and the amino acid percent identity
was recalculated, which we called a “trimmed percent identity.”

TnpA and TnpB protein sequences were binned by distance from the training set in 9
equal width bins from 10% to 100% trimmed percent identity. 200 proteins were randomly
selected from each bin for TnpA proteins that appeared in the absence of a TnpB protein
(1S200-like), TnpA proteins that appeared with a TnpB protein (1S605-like), and TnpB
proteins that appeared with a TnpA protein (1S605-like). ESMFold was used to fold

all 5400 proteins, with TnpA protein sequences folded as dimers with a glycine pseudo-
linker of length 100. The mean backbone atom pLDDT was calculated and reported as

a measurement of ESMFold prediction confidence. Example TnpA and TnpB proteins
were aligned to the 2VIC and 8BF8 Protein Data Bank (PDB) structures, respectively,
using the US-align tool (146), right-end and left-end DNA sequences from PDB structures
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2VIC and 2VHG were overlayed on the aligned structure, and structures were visualized

in PyMOL (147). RNAfold from the ViennaRNA package was used to fold the predicted
®RNA with default parameters (148, 149). Visualizations of ®RNAs were drawn using R2R
(150). Visualizations of ISEvol TnpA and TnpB were also computed using AlphaFold3 by
uploading sequences to the AlphaFold Server (64).

Evo was also used to calculate the entropy of the conditional probabilities at each position

in each sequence with the pertinent special token prepended. For example, the entropy at
position i was calculated using the likelihoods p(x; | x,, ..., x;_,) over the entire vocabulary.
We then visualized these entropies alongside the annotated sequence positions for several
canonical 1S200/1S605 systems and summarized the average entropy values within 250 bp of
TnpA and TnpB coding sequences.

IS200/IS605 categorical Jacobian analysis

We computed the “categorical Jacobian” matrix on a sequence of nucleotides based on a
procedure introduced by Zhang et al. (70) and clarified in the accompanying code at the
GitHub repository (https://github.com/zzhangzzhang/pLMsinterpretability). To summarize
this procedure, let x = (x, x,, ..., x;), x; € & denote a sequence of length L where in our

study we define & = {“A”,“C”,“G”,“T”} to be a nucleotide vocabulary. Let f: 2t — rL* 1!
denote the function for computing the language-model logits (where a softmax function
computed over the logits for a given position corresponds to the language-model likelihoods
for that position) given an input sequence x.

Now we define a sequence x[x;] = (x, ..., X, ..., x,) @S the sequence x mutated to x, € &
at position i € [L], where [L] is defined as the set {1,2, ..., L}. We also define

g(x, %.1) = f(x) — f(x[%]) where g: &L x & x [L] — RE X ¥ s a function that computes the
difference in logits between the original sequence x and the mutated sequence x|x,].

The “categorical Jacobian” tensor J is then defined as

g(x,“A”, 1) - g(x,“T", 1)

g(x,“A”, L) - g(x,“T", L)

which requires mutating x to all nucleotides at all positions. Note that J € RL X 1 X Lx 121,
This tensor J is then modified to produce a mean-centered tensor J by computing each entry
in this tensor as

S 1 L 1 4
J:,/’,k,/ :Ji./,k,l_z Z J:’,].k,l_m J:,/’,k,/
i'=1 j =1

1 L 1 %
-+ Z Jijk = 1o Jijr
L~ 12,4,

and is then symmetrized by computing, for each entry
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Jijki = %(jxlj,k,l + ju.,./)

to produce a final symmetrized tensor J.

We can turn J into a positional “couplings map” matrix ¢’ € RE % L in which each entry
can be intuitively thought of as representing a “Euclidean” magnitude of the change in the
logits across all values of the vocabulary 1271, where a larger magnitude change indicates a
greater information “coupling” between the two corresponding positions; more concretely,
to calculate each entry in C’, we compute

We now define the “average product correction” (APC) function a:[L] x [L] — R as

computing, for each entry in a matrix X € RF < £

Xi,; - (Z,L: 1Xi'./)(Z/L' = IX,-_,-r)
2 X=Xy

—1i=j

a(i, j;X) =

where 1{ - } € {0,1} is the indicator function. We are now ready to define the final matrix,
¢ € REXE which is obtained by computing, for each entry in C

Cl,j = a(i,j; C’)

Throughout the text, when we refer to the “categorical Jacobian matrix” or simply the
“categorical Jacobian,” we are referring to the matrix C.

We computed the categorical Jacobian matrix using Evo fine-tuned on 1S200/1S605
sequences for natural 1S605 elements ISHp608, 1SDge10, and 1SDra2 using the full IS
sequence flanked with 500 bp of natural context on either side, where each pair of flanking
sequences is extracted from the best BLAST (151) hit against the nr/nt databases for the IS
sequence from ISFinder (71).

I1S200/1S605 filtering of generations and construct design

To nominate generated 1S200/1S605 sequences for synthesis and experimental validation,
the sequences were further curated as follows. TnpA proteins from generated sequences
were first searched with blastp (151) against four natural TnpA proteins that were used as
positive controls, originating from 1S200/1S605 elements ISSpn6, ISHp608, 1SDgel0, and
ISStin10. Alignments were filtered to keep only those that were between 100 and 200 amino
acids in length, and to keep only those that had a trimmed percent identity with the nearest

Science. Author manuscript; available in PMC 2025 May 15.



1duosnuep Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnue Joyiny

Nguyen et al.

Page 31

training example that was <90%, and those that were at least 50% identical to the nearest
positive control as estimated by the blastp alignment. Structures of TnpA proteins from the
remaining 723 ISSpn6like, 697 ISHp608-like, 123 1ISDgel10-like, and 1686 1SStin10-like
generated sequences were predicted using ESMFold (47) as monomers and only proteins
with mean pLDDTs =0.7 were retained. Generations were further reduced by selecting for
generations where the TnpA protein contained at least one HUH and one Y XXXQ amino
acid motif, had a TnpA start codon within <500 bp from the start of the generation, and
where the TnpA protein length was <180 amino acids.

For remaining 1S200-like generations, we further required that at least 250 bp be on either
side of the predicted TnpA CDS. The 200 bp sequences flanking the TnpA CDS were
searched for perfect hairpins (no mismatches or gaps allowed in the stem, and loop length
<5 bp), and sequences with max length perfect hairpin stems <6 bp in the 200bp left of the
TnpACDS or <8 bp in the 200 bp right of the TnpACDS were filtered out (fig. S20C).

For the 247 1SStin10-like and 102 1SSpn6-like generations passing these filters, we
computed upstream base pair propensity vectors using ViennaRNA (144) for the 200

bp on either side of the TnpA CDS (fig. S20D) by taking the row sum of the base

pair propensity matrix where all pairwise base pair propensities were calculated using
ViennaRNA.get_pr(i, j) for i < j. The resulting upstream base pair propensity vectors for
each generation were hierarchically clustered with the upstream base pair propensity vectors
for ISSpn6 and ISStin10 on Euclidean distance with the UPGMA algorithm. A dendrogram
threshold was chosen manually by visual examination, and selected clusters were extracted
using scipy.cluster.hierarchy. fcluster (fig. S20E). This process was repeated with remaining
1S200-like candidates with best matches to I1SStin10 against the 1Stin10 upstream base pair
propensity vectors (fig. S20F), as well as with best matches to 1ISSpn6 against the ISSpn6
upstream base pair propensity vectors (fig. S20G). For any remaining sequences, the TnpA
dimer structure was predicted using AlphaFold-Multimer-v2.3.0 via ColabFold (152) using
two models with three recycles each, and sequences with TnpA dimer structures that did not
appear to dimerize via pAE scores were discarded.

Remaining candidates were formatted for IDT synthesis as 520 bp sequences containing
30 bp of filler sequence containing a primer binding site for amplification followed by

the 200 bp to the left of the TnpA CDS followed by 60 bp of filler sequence containing
primer binding sites for two primers facing out followed by the 200 bp to the right of

the TnpA CDS followed by 30 bp of filler sequence containing a primer binding site for
amplification (data S1). Resulting sequences were uploaded to the IDT web portal and 12
ISStin10-like and 12 ISSpn6-like candidates were selected from the sequences that had
green and yellow IDT synthesizability scores. The TnpA corresponding to these sequences
were codon optimized using the IDT codon optimization tool set to £. coliand flanked
with the standard T7 promoter, RBS, and T7 terminator sequences for PURExpress (NEB)
as listed in the manufacturer’s manual. An additional TnpA mutant construct in which

any YXXXQ motif in the sequence was mutated to AXXXQ was also designed for each
candidate. The codon-optimized TnpA and TnpA mutant protein coding sequences for
PUREXxpress and end-containing sequences were ordered as IDT eBlocks.
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For remaining 1S605-like generations, we further required that at least 250 bp be upstream
of the predicted TnpA CDS and that at least 200 bp be downstream of the predicted TnpB
CDS. We then filtered for sequences with TnpB protein start codon distances of at most 100
bp downstream of the TnpA protein stop codon.

For the 407 ISHp608-like and 67 ISDge10-like generations passing these filters, we
formatted the ends for IDT synthesis as 520 bp sequences containing 30 bp of filler
sequence containing a primer binding site for amplification followed by the 200 bp to

the left of the TnpA CDS followed by 60 bp of filler sequence containing primer binding
sites for two primers facing out followed by the —50:150 bp to the right of the ThpB CDS
followed by 30 bp of filler sequence containing a primer binding site for amplification (data
S1).Resulting sequences were uploaded to the IDT web portal and only the 37 1ISDge10-like
and the 20 ISHp608-like sequences that were green by IDT synthesizability scores were
retained. For these sequences, the ThpA dimer structure was predicted using AlphaFold-
Multimer-v2.3.0 via ColabFold (152) using two models with three recycles each, and
sequences with TnpA dimer structures that did not appear to dimerize via pAE scores were
discarded. From the remaining sequences, 12 ISStin10-like and 12 1SSpn6-like candidates
were selected ensuring that the best sequence identity matches to the fine-tuning set were
>50%. For final synthesis and experimental validation, a different 60 bp filler sequence
was used for the ISHp608-like candidates compared to the 1SStin10-like, 1ISSpn6é-like, or
ISDge10-like sequences to eliminate a primer-binding site containing a TTAC, which is the
canonical ISHp608 target site. The TnpAs corresponding to these 24 candidate sequences
were codon optimized using the IDT codon optimization tool set to £. coliand flanked
with the standard T7 promoter, RBS, and T7 terminator sequences for PURExpress (NEB)
as listed in the manufacturer’s manual. An additional TnpA mutant construct in which any
YXXXQ in the sequence was mutated to AXXXQ was also designed for each candidate.
The codon-optimized TnpA and TnpA mutant PUREXxpress and end-containing sequences
were ordered as IDT eBlocks.

Similar eBlocks encoding TnpA using the natural sequence, encoding a TnpA mutant with
the catalytic tyrosine mutated to alanine, and a 520 bp sequence containing the ends were
ordered for the natural 1S200 transposon I1SSpn6 and the natural 1S605 transposon ISHp608.

IS200/IS605 TnpA protein preparation

TnpA and TnpA-mutant eBlocks were PCR amplified using NEBNext 2xPCR mastermix
(New England Biolabs) for 35 cycles using an annealing temperature of 65°C and

an elongation time of 15 s in 50 L reactions with primers PURExpress_T7_F and
PURExpress_T7_F (sequences provided in data S1), column purified using a QIAQuick
PCR purification kit (Qiagen), and diluted to 30 ng/uL. In vitro transcription-translation
reactions were performed using PURExpress (New England Biolabs) in 27 uL reactions
containing 10 pL solution A, 7.5 pL solution B, 1 uL of Murine RNAse Inhibitor (NEB), and
8.5 ul (255 ng) of template DNA. DHFR expression plasmid provided with the PURExpress
kit was used as template DNA for reactions lacking TnpA protein. Reactions were incubated
for 3 hours at 37°C and directly transferred to in vitro reactions.
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IS200/IS605 substrate DNA preparation

Substrate eBlocks were PCR amplified using NEBNext 2xPCR master mix (NEB) for 35
cycles using an annealing temperature of 65°C and an elongation time of 15 s in 100 uL
reactions with a forward primer containing 3 PTOs and a reverse primer containing a5’
phosphate (sSDNA_substrate PTO_F and ssDNA_substrate_5phos_R; sequences provided
in data S1), column purified using QIAprep Spin Miniprep Columns (Qiagen), and eluted

in 45 pL water. The Guide-it Long ssSDNA Production System v2 (Takara Bio) was used to
generate substrate sSSDNA in 50 L reactions with 30 pL purified PCR product following the
manufacturer’s conditions with an incubation time of 10 min at 37°C and 5 min at 80°C with
Strandase A, and 5 min at 37°C and 5 min at 80°C with Strandase B. The resulting SSDNA
substrates were then column purified using a NucleoSpin Gel and PCR Clean-Up kit (Takara
Bio) by diluting the reaction to 100 pL total volume, adding 200 uL buffer NTC (Takara
Bio), mixing thoroughly before adding to the column, and washing with 600 pL buffer NT3
before eluting in 30 pL elution buffer. Resulting ssDNA products were diluted to 20 ng/uL
as quantified using a NanoDrop One in ssDNA mode (ThermoScientific).

Substrate PCR products for use in the in vitro assay as dsDNA were further treated with
exonuclease | (£. coli, New England Biolabs) to remove residual PCR primers or other
ssDNA in 20 L reactions containing 600 ng PCR product, 2 uL 10x exonuclease I buffer,
and 5 pL of exonuclease 1. After column purification using a QIAQuick PCR purification kit
(Qiagen), the resulting dsDNA substrate was diluted to 20 ng/uL.

IS200/IS605 in vitro TnpA excision/insertion assays

In vitro transposition reactions were performed by incubating 10 uL. PUREXxpress product
with 10 pL (200 ng) of ssDNA or dsDNA substrate for 2 hours at 37°C. Reactions were
treated with 1 pL RNase A (20 mg/mL, New England Biolabs) for 5 min at 37°C and 10
UL Proteinase K (8 units, New England Biolabs) for 15 min at 37°C. Resulting ssSDNA
products were then column purified using a NucleoSpin Gel and PCR Clean-Up kit (Takara
Bio) by diluting the reaction to 100 pL total volume, adding 200 pL buffer NTC (Takara
Bio), mixing thoroughly before adding to the column, and washing with 600 pL buffer
NT3 before eluting in 30 uL elution buffer. PCRs were then performed in 50 pL reactions
for 35 cycles using an annealing temperature of 65°C and an elongation time of 20 s

using 4 pL eluate, NEBNext 2x PCR master mix (New England Biolabs) and primers
FillerOut_F and FillerOut_R for I1SStin10-like, 1ISSpn6-like, and 1SDgel10-like candidates
and using primers ISHp608-like_FillerOut_F and FillerOut_R for ISHp608-like candidates
(sequences are provided in data S1). PCR products were column-purified using a QIAquick
PCR Purification kit (Qiagen) and run on either a 2% E-Gel EX agarose gel pre-stained
with SYBR Gold or on a 48-well 2% E-Gel agarose gel pre-stained with SYBR Safe
(ThermosScientific).

IS200/1S605 nanopore sequencing analysis of PCR products

PCR products from TnpA reactions were submitted for nanopore sequencing via the
Premium PCR sequencing service from Plasmidsaurus (2 samples per condition), which
uses the ligation sequencing kit v14 (Oxford Nanopore Technologies) and R10.4.1 flow cells
(Oxford Nanopore Technologies). Reads were then processed by filtering for the expected
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read structure (FillerOut_F/ISHp608-like_FillerOut_F followed by sequence followed by
FillerOut_R reverse complemented or FillerOut_R followed by sequence followed by
FillerOut_F/ISHp608-like_FillerOut_F reverse complemented), by looking for expected
primer sequences in the 30 bp on either end, allowing for up to four errors (sequences are
provided in data S1). Reads passing this filtering were then mapped to the relevant substrate
sequence by sliding a window across the sequence, splitting each window into a left and
right half, and matching each half to the substrate sequence, requiring a perfect match for
both sides. The window was twice the minimum length i required for all substrings of length
/from the substrate sequence to be unique. Each match was then added to a jump map
matrix for each condition at the position corresponding to the right-most base of the left side
match and the left-most base of the right-side match (fig. S22A). Transposon boundaries and
hairpins were annotated based on these jump maps and additional manual processing and
inspection of reads and alignments via Geneious Prime 2024 (https://www.geneious.com).

Gene essentiality prediction

We obtained binary genome-wide essentiality results for 56 bacterial genomes from the

DEG database (73) in which coding genes are labeled with “essential” or “nonessential”
binary labels. We also obtained genome-wide essentiality results for two phage genomes,
lambda and P1, from Piya et al. (74) and used the binary labels assigned by the study authors
based on the results of their CRISPRI screen.

To perform the in silico gene essentiality screen, we obtained the whole bacterial genome
using the RefSeq IDs provided by DEG. We used RefSeq: NC_001416 as the reference
genome for lambda phage and RefSeq: NC_005856 as the reference genome for P1 phage.
We iterated over all genes annotated as protein coding and computed a score with a
nucleotide language model for each gene. To compute the score, we provided the language
model with different levels of context: (i) the sequence of the gene only, (ii) the sequence
of the gene plus equally distributed context on both sides of the gene up to a total 8192

bp, or (iii) the sequence of the gene plus equally distributed context on both sides of the
gene up to a total 65,536 bp. If a gene extended beyond 8192 bp, we used the first 8192 bp
of the gene sequences. We computed the score as the difference in log-likelihoods between
a mutated sequence and the unmutated wild-type sequence. To mutate the sequence, we
inserted multiple stop codons “TAATAATAA-TAGTGA” at an offset of 12 nucleotides into
the sequence; for the 8192 and 65,536 bp context settings, we add context to both sides

of the gene after the insertion. Additionally, for the 8192 bp setting, we tested three other
strategies: (i) inserting a single stop codon “TAA” 12 nucleotides into the sequence, (ii)
deleting the entire gene sequence (after which we provided 8192 context centered on the
deleted gene) (fig. S27), or (iii) inserting stop codons tiled across the coding sequence at
an interval of every 20 codons (or 60 bp) beginning with the first codon. As an additional
control, we also used the gene’s linear position in the reference genome as the value with
which to predict essentiality. If a model were simply using positional information to make
essentiality predictions, the performance would be similar to this control.

We also used the conservation of a gene as another control. To estimate conservation,
we extracted all protein sequences from the OpenGenome dataset. For each genome
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corresponding to each essentiality study, we performed an all-by-all sequence search
between all of the protein sequences in the genome-of-interest and all of the proteins in
OpenGenome. To do this reasonably efficiently, we used mmseqs easy-search with default
parameters, where the protein sequences in the genome-of-interest constituted the query
sequences and the OpenGenome protein sequences constituted the target sequences. To
compute the conservation of each gene, we counted the number of significant hits identified
by mmseqs under a nominal E value threshold of 1 x 1072, We assumed that a greater
number of hits corresponds to higher conservation, which in turn corresponds to greater
essentiality.

We used the change in log-likelihoods (or the control “scores”) to predict the binary gene
essentiality labels and compute the strength of the prediction with the AUROC score and the
average precision score as implemented in scikit-learn. We assessed statistical significance
of the AUROC with a permutation-based method in which a null distribution is constructed
by permuting the binary labels and recomputing the subsequent AUROC. We performed
100,000 permutations to construct this null distribution.

Genome-scale generation and evaluation

We used Evo pretrained at 131k context to sample sixteen sequences of lengths ~1 Mb. We
sampled witha temperature of 1.0 anda top-k value of 4 following a standard autoregressive
sampling procedure (139). We prompted the model with four species-specific prompts:

1 |d_Bacteria;p_Tenericutes;c_Mollicutes; o_Mycoplasmatales;
f_Mycoplasmataceae; g_Mycoplasma;s_Mycoplasma genitalium||

2. |d_Bacteria;p_Bacillota;c_Bacilli;o_Staphylococcales;f Staphylococcaceae;
g_Staphylococcus;s_Staphylococcus aureus||

3. |d_Bacteria;p_Pseudomonadota;c_Gammaproteobacteria;o_Enterobacterales;
f_Enterobacteriaceae;g_Klebsiella;s_Klebsiella pneumoniae||

4, |d_Bacteria;p_Pseudomonadota;c_Gammaproteobacteria;o_Enterobacterales;
f_Enterobacteriaceae;g_Escherichia;s_Escherichia||

These prompts correspond to the species Mycoplasma genitalium, Staphylococcus aureus,
Klebsiella pneumoniae, and E. coli, respectively, and follow Greengenes-style lineage
strings, which concatenate all taxa starting with the most ancestral and ending with the
most current, separated by semicolons. A single character prefix is also added to each
taxon indicating its rank. These lineages strings were prepended to each contig during the
131k-context-extension phase of pretraining. We sampled four sequences for each prompt,
leading to a total of sixteen sequences.

We evaluated these generations with CheckM (77), a tool that computes basic genome
quality metrics based on whether a given long DNA sequence has similar properties as
known bacterial genomes. CheckM uses Prodigal (140) to identify coding sequences and
computes the coding density as one metric of genome quality. CheckM will also search for
the presence of genes that are highly conserved across much of prokaryotic diversity. We
divided all of our generations into discrete segments of up to 131,072 bp and computed
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the distribution of CheckM coding densities across these crops. As a positive control,

we randomly selected 100 bacterial genomes from GTDB and used CheckM to compute
the coding densities for 131,072 bp crops from these genomes. As a negative control,

we generated 1000 sequences of length 131,072 in which the four DNA base pairs were
sampled uniformly at random. We then used CheckM to compute the coding densities on
this random sequence. We also used tRNAscan-SE to search for tRNA sequences in our
generated sequences and we used barrnap to search for rRNA sequences.

We used ESMFold to obtain atomic-level structure predictions for all of the Prodigal-defined
coding sequences in each of our generations. We limited ESMFold structure predictions

to coding sequences between 100 and 1024 amino acids, inclusive. We computed the

mean backbone pLDDT for all predicted structures. We used the biotite Python package

to compute the percentages of secondary structure elements for all predicted structures. We
used FoldSeek easy-search to perform efficient TM-based alignment (- -alignment-type 1),
and all other parameters set to their default values, to perform an all-by-all structural search
between ESMFold structures corresponding to Evo-generated sequences and the structure
predictions for UniRef50 provided in the AlphaFold Protein Structure Database (https://
alphafold.ebi.ac.uk/). Structure alignments were scored as the average of the query TMscore
and the target TMscore, where a score greater than 0.4 was considered a structural match.
We used these structural matches, along with GO terms assigned to UniRef50 clusters,

to infer GO terms for the Evo-generated proteins as well. We used PyMOL to visualize
protein structures corresponding to the five GO “molecular function” terms with the most
representation among the Evo generated proteins.

We evaluated genomic sequence patterns including tetranucleotide and stop codon
frequencies. Tetranucleotide usage deviations (TUDs) were calculated as previously
described (78). TUD phylogenies were generated by hierarchical clustering using a distance
matrix constructed from the Euclidean distances of log2transformed TUDs for each genome.
Stop codon frequencies in the three reading frames of Prodigal-identified ORFs were stored
as vectors consisting of nine scalar counts. Percentages of stop codons were calculated as
the total sum of each stop codon (TAA, TAG, or TGA) relative to the total sum of all stop
codons in a given vector. Stop codon ratios were calculated as the relative proportions of all
nine scalars in a given vector.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Code and models related to this study are publicly available at https://github.com/evo-
design/evo and uploaded to Zenodo (153). The following models have been uploaded

to Hugging Face under an open-source license: pretrained Evo model with 8k context
(https://huggingface.co/togethercomputer/evo-1-8k-base); pretrained Evo model with 131k
context (https://huggingface.co/togethercomputer/evo-1-131k-base); fine-tuned Evo model
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(110). Additional details on these datasets are provided in Materials and methods. DNA,
RNA, and protein sequences generated during our validation experiments are available

in data S1. All newly created materials are available upon reasonable request to the
corresponding authors.

REFERENCES AND NOTES

1. Morgan TH, Sex limited inheritance in Drosophila. Science 32, 120-122 (1910). doi: 10.1126/
science.32.812.120 [PubMed: 17759620]

2. Watson JD, Crick FHC, Molecular structure of nucleic acids: A structure for deoxyribose nucleic
acid. Nature 171, 737-738 (1953). doi: 10.1038/171737a0 [PubMed: 13054692]

Science. Author manuscript; available in PMC 2025 May 15.


https://github.com/evo-design/evo
https://github.com/evo-design/evo
https://huggingface.co/togethercomputer/evo-1-8k-base
https://huggingface.co/togethercomputer/evo-1-131k-base
https://huggingface.co/LongSafari/evo-1-8k-crispr
https://huggingface.co/LongSafari/evo-1-8k-transposon
https://huggingface.co/LongSafari/evo-1-8k-transposon
https://huggingface.co/datasets/LongSafari/open-genome
https://huggingface.co/datasets/LongSafari/open-genome

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Nguyen et al.

11.

12.

13.

15.

16.

Page 38

. Nirenberg MW, Matthaei JH, The dependence of cell-free protein synthesis in £. coli upon naturally

occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci. U.S.A. 47, 1588-1602 (1961).
doi: 10.1073/pnas.47.10.1588 [PubMed: 14479932]

. Dobzhansky T, Genetics and the Origin of Species (Columbia Univ. Press, 1951).
.Jumper J. et al. , Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589

(2021). doi: 10.1038/s41586-021-03819-2 [PubMed: 34265844]

. Rives A. et al. , Biological structure and function emerge from scaling unsupervised learning to 250

million protein sequences. Proc. Natl. Acad. Sci. U.S.A 118, €2016239118 (2021). doi: 10.1073/
pnas.2016239118

. Outeiral C, Deane CM, Codon language embeddings provide strong signals for use in protein

engineering. Nat. Mach. Intell 6, 170-179 (2024). doi: 10.1038/s42256-024-00791-0

. Li S.etal., CodonBERT large language model for mMRNA vaccines. Genome Res. 34, 1027-1035

(2024). doi: 10.1101/gr.278870.123 [PubMed: 38951026]

. Avsec Z et al. , Effective gene expression prediction from sequence by integrating long-range

interactions. Nat. Methods 18, 1196-1203 (2021). doi: 10.1038/s41592-021-01252-x [PubMed:
34608324]

10. Watson JL et al. , De novo design of protein structure and function with RFdiffusion. Nature 620,

1089-1100 (2023). doi: 10.1038/s41586-023-06415-8 [PubMed: 37433327]

Madani A. et al. , Large language models generate functional protein sequences across diverse
families. Nat. Biotechnol 41, 1099-1106 (2023). doi: 10.1038/s41587-022-01618-2 [PubMed:
36702895]

Ingraham JB et al. , [lluminating protein space with a programmable generative model. Nature 623,
1070-1078 (2023). doi: 10.1038/s41586-023-06728-8 [PubMed: 37968394]

DaSilva LF et al. , DNA-Diffusion: Leveraging Generative Models for Controlling

Chromatin Accessibility and Gene Expression via Synthetic Regulatory Elements. bioRxiv
2024.02.01.578352 [Preprint] (2024); 10.1101/2024.02.01.578352.

14. Lal A, Garfield D, Biancalani T, Eraslan G, regLM: Designing realistic regulatory

DNA with autoregressive language models. bioRxiv 2024.02.14.580373 [Preprint] (2024);
10.1101/2024.02.14.580373.

Zvyagin M et al. ., GenSLMs: Genome-scale language models reveal SARS-CoV-2
evolutionary dynamics. Int. J. High Perform. Comput. Appl 37, 683-705 (2023). doi:
10.1177/10943420231201154

Dalla-Torre H. et al. , The Nucleotide Transformer: Building and Evaluating Robust
Foundation Models for Human Genomics. bioRxiv 2023.01.11.523679 [Preprint] (2023);
10.1101/2023.01.11.523679.

17. Zhou Z, Ji Y, Li W, Dutta P, Davuluri R, Liu H, DNABERT-2: Efficient foundation model and

benchmark for multi-species genome. arXiv:2306.15006 [g-bio.GN] (2023).

18. Tay Y. et al. , Charformer: Fast Character Transformers via Gradient-based Subword Tokenization.

arXiv:2106.12672 [cs.CL] (2022).

19. Chen S, Wong S, Chen L, Tian Y, Extending context window of large language models via

positional interpolation. arXiv:2306.15595 [cs.CL] (2023).

20. Liu H, Zaharia M, Abbeel P, Ring attention with blockwise transformers for near-infinite context.

arXiv:2310.01889 [cs.CL] (2023).

21. Fishman V. et al. , GENA-LM: A family of open-source foundational DNA language models for

long sequences. bioRxiv 2023.06.12.544594 [Preprint] (2024); 10.1101/2023.06.12.544594.

22.JiY, Zhou Z, Liu H, Davuluri RV, DNABERT: Pre-trained Bidirectional Encoder Representations

from Transformers model for DNA-language in genome. Bioinformatics 37, 2112-2120 (2021).
doi: 10.1093/bioinformatics/btab083 [PubMed: 33538820]

23. Hwang Y, Cornman AL, Kellogg EH, Ovchinnikov S, Girguis PR, Genomic language model

predicts protein co-regulation and function. Nat. Commun 15, 2880 (2024). doi: 10.1038/
s41467-024-46947-9 [PubMed: 38570504]

24. Poli M. et al. , StripedHyena: Moving Beyond Transformers with Hybrid Signal Processing

Models, GitHub (2023); https://github.com/togethercomputer/stripedhyena.

Science. Author manuscript; available in PMC 2025 May 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Nguyen et al.

25.

26.

217.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44,

45.

46.

Page 39

Li Z. et al. , Fourier neural operator for parametric partial differential equations. arXiv:2010.08895
[cs.LG] (2021).

Gu A, Goel K, Ré C, Efficiently modeling long sequences with structured state spaces.
arXiv:2111.00396 [cs.LG] (2022).

Orvieto A. et al. , Resurrecting Recurrent Neural Networks for Long Sequences. arXiv:2303.06349
[cs.LG] (2023).

Massaroli S. et al., “Laughing Hyena Distillery: Extracting Compact Recurrences From
Convolutions” in Advances in Neural Information Processing Systems, vol. 36, Oh A. et al., Eds.
(Curran Associates, Inc., 2023), pp. 17072-17116.

Su J. et al. , RoFormer: Enhanced transformer with rotary position embedding. Neurocomputing
568, 127063 (2024). doi: 10.1016/j.neucom.2023.127063

Ma X. et al. , Mega: Moving average equipped gated attention. arXiv:2209.10655 [cs.LG] (2023).
Fu DY etal., Hungry hungry hippos: Towards language modeling with state space models.
arXiv:2212.14052 [cs.LG] (2023).

Pilault J. et al., “Block-state transformers” in Advances in Neural Information Processing Systems,
vol. 36, Oh A. et al., Eds. (Curran Associates, Inc., 2023), pp. 7311-7329.

Nguyen E. et al., “HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide
Resolution” in Advances in Neural Information Processing Systems, vol. 36, Oh A. et al., Eds.
(Curran Associates, Inc., 2023), pp. 43177-43201.

Poli M. et al. , Hyena Hierarchy: Towards Larger Convolutional Language Models.
arXiv:2302.10866 [cs.LG] (2023).

Parks DH et al. , GTDB: An ongoing census of bacterial and archaeal diversity through a
phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic
Acids Res. 50, D785-D794 (2022). doi: 10.1093/nar/gkab776 [PubMed: 34520557]

Camargo AP et al. , IMG/VR v4: An expanded database of uncultivated virus genomes within a
framework of extensive functional, taxonomic, and ecological metadata. Nucleic Acids Res. 51,
D733-D743 (2023). doi: 10.1093/nar/gkac1037 [PubMed: 36399502]

Camargo AP et al. , IMG/PR: A database of plasmids from genomes and metagenomes with rich
annotations and metadata. Nucleic Acids Res. 52, D164-D173 (2024). doi: 10.1093/nar/gkad964
[PubMed: 37930866]

Hoffmann J. et al. , Training Compute-Optimal Large Language Models. arXiv:2203.15556
[cs.CL] (2022).

Kaplan J. et al. , Scaling Laws for Neural Language Models. arXiv:2001.08361 [cs.LG] (2020).
Gu A, Dao T, Mamba: Linear-time sequence modeling with selective state spaces.
arXiv:2312.00752 [cs.LG] (2024).

Meier J. et al., “Language models enable zero-shot prediction of the effects of mutations on
protein function” in Advances in Neural Information Processing Systems, vol. 34, Ranzato M,
Beygelzimer A, Dauphin Y, Liang PS, Wortman Vaughan J, Eds. (Curran Associates, Inc., 2021),
pp. 29287-29303.

Notin P. et al., “Tranception: Protein Fitness Prediction with Autoregressive Transformers and
Inference-time Retrieval” in Proceedings of the 39th International Conference on Machine
Learning, vol. 162, Chaudhuri K. et al., Eds. (PMLR, 2022), pp. 16990-17017.

Benegas G, Albors C, Aw AJ, Ye C, Song YS, GPN-MSA: an alignment-based DNA language
model for genome-wide variant effect prediction. bioRxiv 2023.10.10.561776 [Preprint] (2024);
10.1101/2023.10.10.561776.

Notin P. et al. , ProteinGym: Large-Scale Benchmarks for Protein Design and Fitness Prediction.
bioRxiv 2023.12.07.570727 [Preprint] (2023); 10.1101/2023.12.07.570727.

Livesey BJ, Marsh JA, Updated benchmarking of variant effect predictors using deep mutational
scanning. Mol. Syst. Biol 19, e11474 (2023). doi: 10.15252/msb.202211474

Yang KK, Fusi N, Lu AX, Convolutions are competitive with transformers for protein

sequence pretraining. Cell Syst. 15, 286-294.e2 (2024). doi: 10.1016/j.cels.2024.01.008 [PubMed:
38428432]

Science. Author manuscript; available in PMC 2025 May 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Nguyen et al.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.
66.

67.

Page 40

Lin Z. et al. , Evolutionary-scale prediction of atomic-level protein structure with a language
model. Science 379, 1123-1130 (2023). doi: 10.1126/science.ade2574 [PubMed: 36927031]

Nijkamp E, Ruffolo JA, Weinstein EN, Naik N, Madani A, ProGen2: Exploring the boundaries
of protein language models. Cell Syst. 14, 968-978.e3 (2023). doi: 10.1016/j.cels.2023.10.002
[PubMed: 37909046]

Li F-Z, Amini AP, Yue Y, Yang KK, Lu AX, Feature Reuse and Scaling: Understanding

Transfer Learning with Protein Language Models. bioRxiv 2024.02.05.578959 [Preprint] (2024);
10.1101/2024.02.05.578959.

Chen J. et al., Interpretable RNA foundation model from unannotated data for highly accurate
RNA structure and function predictions. arXiv:2204.00300 [g-bio.QM] (2022).

Zhang ZD, Nayar M, Ammons D, Rampersad J, Fox GE, Rapid /n vivo exploration of a 5S rRNA
neutral network. J. Microbiol. Methods 76, 181-187 (2009). doi: 10.1016/j.mimet.2008.10.010
[PubMed: 19041908]

LaFleur TL, Hossain A, Salis HM, Automated model-predictive design of synthetic promoters

to control transcriptional profiles in bacteria. Nat. Commun 13, 5159 (2022). doi: 10.1038/
$41467-022-32829-5 [PubMed: 36056029]

Urtecho G, Tripp AD, Insigne KD, Kim H, Kosuri S, Systematic dissection of sequence
elements controlling s70 promoters using a genomically encoded multiplexed reporter assay

in Escherichia coli. Biochemistry 58, 1539-1551 (2018). doi: 10.1021/acs.biochem.7b01069
[PubMed: 29388765]

Hossain A. et al. , Automated design of thousands of nonrepetitive parts for engineering

stable genetic systems. Nat. Biotechnol 38, 1466-1475 (2020). doi: 10.1038/s41587-020-0584-2
[PubMed: 32661437]

Yu TC et al. , Multiplexed characterization of rationally designed promoter architectures
deconstructs combinatorial logic for IPTG-inducible systems. Nat. Commun 12, 325 (2021). doi:
10.1038/s41467-020-20094-3 [PubMed: 33436562]

Kosuri S. et al. , Composability of regulatory sequences controlling transcription and translation
in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A 110, 14024-14029 (2013). doi: 10.1073/
pnas.1301301110 [PubMed: 23924614]

Salis HM, Mirsky EA, Voigt CA, Automated design of synthetic ribosome binding sites to
control protein expression. Nat. Biotechnol 27, 946-950 (2009). doi: 10.1038/nbt.1568 [PubMed:
19801975]

Reis AC, Salis HM, An automated model test system for systematic development and
improvement of gene expression models. ACS Synth. Biol 9, 3145-3156 (2020). doi: 10.1021/
acssynbio.0c00394 [PubMed: 33054181]

Wang JY, Pausch P, Doudna JA, Structural biology of CRISPR—Cas immunity and genome editing
enzymes. Nat. Rev. Microbiol 20, 641-656 (2022). doi: 10.1038/s41579-022-00739-4 [PubMed:
35562427]

Hsu PD, Lander ES, Zhang F, Development and applications of CRISPR-Cas9 for genome
engineering. Cell 157, 1262-1278 (2014). doi: 10.1016/j.cell.2014.05.010 [PubMed: 24906146]
Koonin EV, Makarova KS, Origins and evolution of CRISPR-Cas systems. Phil. Trans. R. Soc. B
374, 20180087 (2019). doi: 10.1098/rsth.2018.0087

Jinek M. et al. , A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial
immunity. Science 337, 816-821 (2012). doi: 10.1126/science.1225829 [PubMed: 22745249]
Hsu PD et al. , DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol 31,
827-832 (2013). doi: 10.1038/nbt.2647 [PubMed: 23873081]

Abramson J. et al. , Accurate structure prediction of biomolecular interactions with AlphaFold 3.
Nature 630, 493-500 (2024). doi: 10.1038/s41586-024-07487-w [PubMed: 38718835]

Craig NL et al., Eds., Mobile DNA 111 (Wiley, ed. 3, 2020).

Meers C. et al. , Transposon-encoded nucleases use guide RNAs to promote their selfish spread.
Nature 622, 863-871 (2023). doi: 10.1038/s41586-023-06597-1 [PubMed: 37758954]

Karvelis T. et al. , Transposon-associated TnpB is a programmable RNA-guided DNA
endonuclease. Nature 599, 692-696 (2021). doi: 10.1038/s41586-021-04058-1 [PubMed:
34619744]

Science. Author manuscript; available in PMC 2025 May 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Nguyen et al.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.
82.

83.
84.

85.

86.

87.

88.

89.

Page 41

Altae-Tran H. et al. , The widespread 1S200/1S605 transposon family encodes diverse
programmable RNA-guided endonucleases. Science 374, 57-65 (2021). doi: 10.1126/
science.abj6856 [PubMed: 34591643]

Barabas O. et al. , Mechanism of 1S200/1S 605 family DNA transposases: Activation

and transposon-directed target site selection. Cell 132, 208-220 (2008). doi: 10.1016/
j.cell.2007.12.029 [PubMed: 18243097]

Zhang Z. et al. , Protein language models learn evolutionary statistics of interacting sequence
motifs. Proc. Natl. Acad. Sci. U.S.A 121, e2406285121 (2024). doi: 10.1073/pnas.2406285121

Siguier P, Pérochon J, Lestrade L, Mahillon J, Chandler M, 1Sfinder: The reference centre for
bacterial insertion sequences. Nucleic Acids Res. 34, D32-D36 (2006). doi: 10.1093/nar/gkj014
[PubMed: 16381877]

Rocha EPC, Danchin A, Gene essentiality determines chromosome organisation in bacteria.
Nucleic Acids Res. 31, 6570-6577 (2003). doi: 10.1093/nar/gkg859 [PubMed: 14602916]
Zhang R, Ou H-Y, Zhang C-T, DEG: A database of essential genes. Nucleic Acids Res. 32,
D271-D272 (2004). doi: 10.1093/nar/gkh024 [PubMed: 14681410]

Piya D. et al. , Systematic and scalable genome-wide essentiality mapping to identify nonessential
genes in phages. PLOS Biol. 21, e3002416 (2023). doi: 10.1371/journal.pbio.3002416

Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M, Essential genome of Pseudomonas
aeruginosa in cystic fibrosis sputum. Proc. Natl. Acad. Sci. U.S.A 112, 4110-4115 (2015). doi:
10.1073/pnas.1419677112 [PubMed: 25775563]

Blanchard A, Bébéar C, The evolution of Mycoplasma genitalium. Ann. N. Y. Acad. Sci 1230,
E61-E64 (2011). doi: 10.1111/j.1749-6632.2011.06418.x [PubMed: 22417108]

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW, CheckM: Assessing the quality
of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25,
1043-1055 (2015). doi: 10.1101/gr.186072.114 [PubMed: 25977477]

Pride DT, Meinersmann RJ, Wassenaar TM, Blaser MJ, Evolutionary implications of microbial
genome tetranucleotide frequency biases. Genome Res. 13, 145-158 (2003). doi: 10.1101/
gr.335003 [PubMed: 12566393]

Xu L, Kuo J, Liu J-K, Wong T-Y, Bacterial phylogenetic tree construction based on genomic
translation stop signals. Microb. Inform. Exp 2, 6 (2012). doi: 10.1186/2042-5783-2-6 [PubMed:
22651236]

Korkmaz G, Holm M, Wiens T, Sanyal S, Comprehensive analysis of stop codon usage in bacteria
and its correlation with release factor abundance. J. Biol. Chem 289, 30334-30342 (2014). doi:
10.1074/jbc.M114.606632 [PubMed: 25217634]

Seemann T, barrnap, GitHub (2018); https://github.com/tseemann/barrnap.

Goldman N, Thorne JL, Jones DT, Assessing the impact of secondary structure and solvent
accessibility on protein evolution. Genetics 149, 445-458 (1998). doi: 10.1093/genetics/149.1.445
[PubMed: 9584116]

Wei J. et al. , Finetuned language models are zero-shot learners. arXiv:2109.01652 [cs.CL] (2022).
Ouyang L. et al. , Training language models to follow instructions with human feedback.
arXiv:2203.02155 [cs.CL] (2022).

Rafailov R. et al., “Direct Preference Optimization: Your Language Model is Secretly a Reward
Model” in Advances in Neural Information Processing Systems, vol. 36, Oh A. et al., Eds. (Curran
Associates, Inc., 2023), pp. 53728-53741.

Rehm HL et al. , GA4GH: International policies and standards for data sharing across genomic
research and healthcare. Cell Genomics 1, 100029 (2021). doi: 10.1016/j.xgen.2021.100029
Kojima T, Gu SS, Reid M, Matsuo Y, lwasawa Y, “Large Language Models are Zero-Shot
Reasoners” in Advances in Neural Information Processing Systems, vol. 35, Koyejo S. et al., Eds.
(Curran Associates, Inc., 2022), pp. 22199-22213.

Hie BL et al. , Efficient evolution of human antibodies from general protein language models. Nat.
Biotechnol 42, 275-283 (2024). doi: 10.1038/s41587-023-01763-2 [PubMed: 37095349]

Shanker VR, Bruun TUJ, Hie BL, Kim PS, Unsupervised evolution of protein and antibody
complexes with a structure-informed language model. Science 385, 46-53 (2024). doi: 10.1126/
science.adk8946 [PubMed: 38963838]

Science. Author manuscript; available in PMC 2025 May 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Nguyen et al.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

Page 42

Durrant MG et al. , Bridge RNAs direct programmable recombination of target and donor DNA.
Nature 630, 984-993 (2024). doi: 10.1038/s41586-024-07552-4 [PubMed: 38926615]

Dauphin YN, Fan A, Auli M, Grangier D, “Language Modeling with Gated Convolutional
Networks” in Proceedings of the 34th International Conference on Machine Learning, vol. 70,
Precup D, Teh YW, Eds. (PMLR, 2017), pp. 933-941.

Shazeer N, GLU variants improve Transformer. arXiv:2002.05202 [cs.LG] (2020).

Zhang B, Sennrich R, “Root Mean Square Layer Normalization” in Advances in Neural
Information Processing Systems, vol. 32, Wallach H. et al., Eds. (Curran Associates, Inc., 2019).
Fu D. et al., “Monarch Mixer: A simple sub-quadratic GEMM-based architecture” in Advances in
Neural Information Processing Systems, vol. 36, Oh A. et al., Eds. (Curran Associates, Inc., 2023),
pp. 77546-77603.

Arora S. et al. , Zoology: Measuring and improving recall in efficient language models.
arXiv:2312.04927 [cs.CL] (2023).

Bhattamishra S, Patel A, Blunsom P, Kanade V, Understanding in-context learning in transformers
and LLMs by learning to learn discrete functions. arXiv:2310.03016 [cs.LG] (2023).

Romero DW, Kuzina A, Bekkers EJ, Tomczak JM, Hoogendoorn M, CKConv: Continuous kernel
convolution for sequential data. arXiv:2102.02611 [cs.LG] (2022).

Gupta A, Gu A, Berant J, “Diagonal State Spaces are as Effective as Structured State Spaces”

in Advances in Neural Information Processing Systems, vol. 35, Koyejo S. et al., Eds. (Curran
Associates, Inc., 2022), pp. 22982-22994.

Gu A, Goel K, Gupta A, Ré C, “On the Parameterization and Initialization of Diagonal State Space
Models™ in Advances in Neural Information Processing Systems, vol. 35, Koyejo S. et al., Eds.
(Curran Associates, Inc., 2022), pp. 35971-35983.

100. Zhang M. et al. , Effectively modeling time series with simple discrete state spaces.

arXiv:2303.09489 [cs.LG] (2023).

101. Wei J. et al. , Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA

targeting. Cell Syst. 14, 1087-1102.e13 (2023). doi: 10.1016/j.cels.2023.11.006 [PubMed:
38091991]

102. O’Leary NA et al. , Reference sequence (RefSeq) database at NCBI: Current status, taxonomic

expansion, and functional annotation. Nucleic Acids Res. 44, D733-D745 (2016). doi:
10.1093/nar/gkv1189 [PubMed: 26553804]

103. Almeida A. et al. , A unified catalog of 204,938 reference genomes from the human gut

microbiome. Nat. Biotechnol 39, 105-114 (2021). doi: 10.1038/s41587-020-0603-3 [PubMed:
32690973]

104. Chen I-MA et al. , The IMG/M data management and analysis system v.6.0: New tools and

advanced capabilities. Nucleic Acids Res. 49, D751-D763 (2021). doi: 10.1093/nar/gkaa939
[PubMed: 33119741]

105. Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD, Massive

expansion of human gut bacteriophage diversity. Cell 184, 1098-1109.e9 (2021). doi: 10.1016/
j.cell.2021.01.029 [PubMed: 33606979]

106. Forster SC et al. , A human gut bacterial genome and culture collection for improved

metagenomic analyses. Nat. Biotechnol 37, 186-192 (2019). doi: 10.1038/s41587-018-0009-7
[PubMed: 30718869]

107. Mitchell AL et al. , MGnify: The microbiome analysis resource in 2020. Nucleic Acids Res. 48,

D570-D578 (2020). doi: 10.1093/nar/gkz1035 [PubMed: 31696235]

108. Youngblut ND et al. , Large-scale metagenome assembly reveals novel animal-associated

microbial genomes, biosynthetic gene clusters, and other genetic diversity. mSystems 5, e01045-
20 (2020). doi: 10.1128/msystems.01045-20

109. Meyer F. et al. , The metagenomics RAST server - a public resource for the automatic

phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008). doi:
10.1186/1471-2105-9-386 [PubMed: 18803844]

110. Sunagawa S. et al. , Structure and function of the global ocean microbiome. Science 348,

1261359 (2015). doi: 10.1126/science.1261359 [PubMed: 25999513]

Science. Author manuscript; available in PMC 2025 May 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Nguyen et al.

111.

112.

113.

114.

115.

116.

117

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

Page 43

Finn RD, Clements J, Eddy SR, HMMER web server: Interactive sequence similarity searching.
Nucleic Acids Res. 39, W29-W37 (2011). doi: 10.1093/nar/gkr367 [PubMed: 21593126]

Russel J, Pinilla-Redondo R, Mayo-Mufioz D, Shah SA, Sgrensen SJ, CRISPRCasTyper:
Automated Identification, Annotation, and Classification of CRISPR-Cas Loci. CRISPR J. 3,
462-469 (2020). doi: 10.1089/crispr.2020.0059 [PubMed: 33275853]

Altae-Tran H. et al. , Diversity, evolution, and classification of the RNA-guided nucleases
TnpB and Cas12. Proc. Natl. Acad. Sci. U.S.A 120, e2308224120 (2023). doi: 10.1073/
pnas.2308224120

Steinegger M, Soding J, MMseqs2 enables sensitive protein sequence searching for the analysis
of massive data sets. Nat. Biotechnol 35, 1026-1028 (2017). doi: 10.1038/nbt.3988 [PubMed:
29035372]

Katoh K, Misawa K, Kuma K, Miyata T, MAFFT: A novel method for rapid multiple sequence
alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059-3066 (2002). doi:
10.1093/nar/gkf436 [PubMed: 12136088]

Xiong W. et al. , Effective long-context scaling of foundation models. arXiv:2309.16039 [cs.CL]
(2023).

Ainslie J. et al. , GQA: Training generalized multi-query transformer models from multi-head
checkpoints. arXiv:2305.13245 [cs.CL] (2023).

Firnberg E, Labonte JW, Gray JJ, Ostermeier M, A comprehensive, high-resolution map of a
gene’s fitness landscape. Mol. Biol. Evol 31, 1581-1592 (2014). doi: 10.1093/molbev/msu081
[PubMed: 24567513]

Jacquier H. et al. , Capturing the mutational landscape of the beta-lactamase TEM-1. Proc.

Natl. Acad. Sci. U.S.A 110, 13067-13072 (2013). doi: 10.1073/pnas.1215206110 [PubMed:
23878237]

Adkar BV et al. , Protein model discrimination using mutational sensitivity derived from deep
sequencing. Structure 20, 371-381 (2012). doi: 10.1016/j.str.2011.11.021 [PubMed: 22325784]

Tsuboyama K. et al. , Mega-scale experimental analysis of protein folding stability in biology and
design. Nature 620, 434-444 (2023). doi: 10.1038/s41586-023-06328-6 [PubMed: 37468638]

Kelsic ED et al. , RNA structural determinants of optimal codons revealed by MAGE-Seq. Cell
Syst. 3, 563-571.e6 (2016). doi: 10.1016/j.cels.2016.11.004 [PubMed: 28009265]

Weeks R, Ostermeier M, Fitness and functional landscapes of the E. coli RNase I11 gene rnc. Mol.
Biol. Evol 40, msad047 (2023). doi: 10.1093/molbev/msad047

Rockah-Shmuel L, T6th-Petroczy A, Tawfik DS, Systematic mapping of protein mutational space
by prolonged drift reveals the deleterious effects of seemingly neutral mutations. PLOS Comput.
Biol 11, 1004421 (2015). doi: 10.1371/journal.pcbi.1004421

Chen JZ, Fowler DM, Tokuriki N, Comprehensive exploration of the translocation, stability and
substrate recognition requirements in VIM-2 lactamase. eLife 9, e56707 (2020). doi: 10.7554/
eLife.56707

Melnikov A, Rogov P, Wang L, Gnirke A, Mikkelsen TS, Comprehensive mutational scanning
of a kinase /n vivo reveals substrate-dependent fitness landscapes. Nucleic Acids Res. 42, e112
(2014). doi: 10.1093/nar/gku511 [PubMed: 24914046]

Sun S. et al. ., A proactive genotype-to-patient-phenotype map for cystathionine beta-synthase.
Genome Med. 12, 13 (2020). doi: 10.1186/s13073-020-0711-1 [PubMed: 32000841]
Silverstein RA et al. , A systematic genotype-phenotype map for missense variants in the human
intellectual disability-associated gene GDI1. bioRxiv 2021.10.06.463360 [Preprint] (2022);
10.1101/2021.10.06.463360.

Garvie CW et al. , Structure of PDE3A-SLFN12 complex reveals requirements for activation of
SLFN12 RNase. Nat. Commun 12, 4375 (2021). doi: 10.1038/s41467-021-24495-w [PubMed:
34272366]

Kotler E. et al. , A systematic p53 mutation library links differential functional impact to cancer
mutation pattern and evolutionary conservation. Mol. Cell 71, 178-190.e8 (2018). doi: 10.1016/
j.molcel.2018.06.012 [PubMed: 29979965]

Giacomelli AO et al. , Mutational processes shape the landscape of 7”53 mutations in human
cancer. Nat. Genet 50, 1381-1387 (2018). doi: 10.1038/s41588-018-0204-y [PubMed: 30224644]

Science. Author manuscript; available in PMC 2025 May 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Nguyen et al.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

Page 44

Findlay GM et al. , Accurate classification of BRCAZ variants with saturation genome editing.
Nature 562, 217-222 (2018). doi: 10.1038/s41586-018-0461-z [PubMed: 30209399]

Kobori S, Nomura Y, Miu A, Yokobayashi Y, High-throughput assay and engineering of self-
cleaving ribozymes by sequencing. Nucleic Acids Res. 43, e85 (2015). doi: 10.1093/nar/gkv265
[PubMed: 25829176]

Andreasson JOL, Savinov A, Block SM, Greenleaf WJ, Comprehensive sequence-to-function
mapping of cofactor-dependent RNA catalysis in the g/mSribozyme. Nat. Commun 11, 1663
(2020). doi: 10.1038/s41467-020-15540-1 [PubMed: 32245964]

Domingo J, Diss G, Lehner B, Pairwise and higher-order genetic interactions during the evolution
of a tRNA. Nature 558, 117-121 (2018). doi: 10.1038/s41586-018-0170-7 [PubMed: 29849145]

Guy MP et al. , Identification of the determinants of tRNA function and susceptibility to rapid
tRNA decay by high-throughput in vivo analysis. Genes Dev. 28, 1721-1732 (2014). doi:
10.1101/gad.245936.114 [PubMed: 25085423]

Hayden EJ, Ferrada E, Wagner A, Cryptic genetic variation promotes rapid evolutionary
adaptation in an RNA enzyme. Nature 474, 92-95 (2011). doi: 10.1038/nature10083 [PubMed:
21637259]

Pitt JN, Ferré-D’Amaré AR, Rapid construction of empirical RNA fitness landscapes. Science
330, 376-379 (2010). doi: 10.1126/science.1192001 [PubMed: 20947767]

Chang TA, Bergen BK, Language model behavior: A comprehensive survey. arXiv:2303.11504
[cs.CL] (2023).

Hyatt D. et al. , Prodigal: Prokaryotic gene recognition and translation initiation site
identification. BMC Bioinformatics 11, 119 (2010). doi: 10.1186/1471-2105-11-119 [PubMed:
20211023]

Bland C. et al. , CRISPR recognition tool (CRT): A tool for automatic detection of

clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8, 209 (2007). doi:
10.1186/1471-2105-8-209 [PubMed: 17577412]

Kunzmann P. et al. , Biotite: New tools for a versatile Python bioinformatics library. BMC
Bioinformatics 24, 236 (2023). doi: 10.1186/s12859-023-05345-6 [PubMed: 37277726]
Mitrofanov A, Ziemann M, Alkhnbashi OS, Hess WR, Backofen R, CRISPRtracrRNA: Robust
approach for CRISPR tracrRNA detection. Bioinformatics 38, ii42-ii48 (2022). doi: 10.1093/
bioinformatics/btac466 [PubMed: 36124799]

Lorenz R. et al. , ViennaRNA Package 2.0. Algorithms Mol. Biol 6, 26 (2011). doi:
10.1186/1748-7188-6-26 [PubMed: 22115189]

Nawrocki EP, Eddy SR, Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29,
2933-2935 (2013). doi: 10.1093/bioinformatics/btt509 [PubMed: 24008419]

Zhang C, Shine M, Pyle AM, Zhang Y, US-align: Universal structure alignments of proteins,
nucleic acids, and macromolecular complexes. Nat. Methods 19, 1109-1115 (2022). doi:
10.1038/s41592-022-01585-1 [PubMed: 36038728]

Schrodinger LLC, The PyMOL Molecular Graphics System, version 1.8 (2015).

Gruber AR, Lorenz R, Bernhart SH, Neubdck R, Hofacker IL, The Vienna RNA Websuite.
Nucleic Acids Res. 36, W70-W74 (2008). doi: 10.1093/nar/gkn188 [PubMed: 18424795]
Langdon WB, Petke J, Lorenz R, in Genetic Programming, Castelli M, Sekanina L, Zhang M,
Cagnoni S, Garcia-Sanchez P, Eds. (Springer, 2018), pp. 220-236.

Weinberg Z, Breaker RR, R2R - Software to speed the depiction of aesthetic consensus RNA
secondary structures. BMC Bioinformatics 12, 3 (2011). doi: 10.1186/1471-2105-12-3 [PubMed:
21205310]

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, Basic local alignment search tool. J. Mol.
Biol 215, 403-410 (1990). doi: 10.1016/S0022-2836(05)80360-2 [PubMed: 2231712]

Mirdita M. et al. , ColabFold: Making protein folding accessible to all. Nat. Methods 19, 679-682
(2022). doi: 10.1038/s41592-022-01488-1 [PubMed: 35637307]

Hie B, Code for paper “Sequence modeling and design from molecular to genome scale with
Evo,” Zenodo (2024); 10.5281/zenod0.12693561.

Science. Author manuscript; available in PMC 2025 May 15.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Nguyen et al.

A

DNA model

Page 45
B
" Hyena
Output likelihood Rotary
p(xy) ={0.5, 0.1, 0.2, 0.2} Hyena |
Protein language model —J ................
= Hyena | ¢
(IDIIRIIIIDIIIIINIIIIIDY) :
StripedHyena .
Codon language model RNA language model architecture » : I\
—— yena :
STTTITITTITTITISIATTIIIITITe J
Regulatory AUG uAA — (f;te J(—Convolunonj Dense
e — arre 6,
[T, e X X o) e Gate f= Convolution|  Dense
Coding sequence Promoter Non-coding RNA gene Input sequence

Promoter RBS

Long-context genome foundation model

2008

1008

Number of nucleotides

0

® &L
Qo
RO

Dataset

Kingdom

["] Archaea (N = 4,416)
|| Bacteria (N = 80,789)

Convolution
Hyena _J Sequence Mix
i Deise ' Channel Mix

X
|

Transformer++ Mamba
é 8000 38 — 3.8 ] G
it @ ; ’
S 6000 il P 4% = Compute-optimal scaling
[0} o r A r =
(=] Al
N AL
5 4000 S S . 54
. a4l ‘Q%fva‘ / b Eecte s
€ 2000 a * T = ©
3 321 321 S 34 N e
0 107 108 e io7 10° it @
0.3 1 3 10 Model Size Model Size 8_ A N (&
>
Genome length (mb) - Hyena - StripedHyena £ 33 - s
Phylum ’ ’ Py 8 ~ &
[ ]Pseudomonadota (N = 21,693) i3k 36k F ® ks @
[ PseL 1o 3 i g = Pe
[_|Bacilota A (N = 11,264) & @ 321 O Transformer++ ’
|_|Bacteroidota (N = 11,000) T34E . o 2 |BAE Ssipas o & Mamba .
| Actinomycetota (N = 8,813) o = A A 3 O Hyena v
[ |Bacillota (N = 5,292) 32 e 2 |32t Sefyes @i 319 ¢ StripedHyena
[ |Patescibacteria (N = 3,374) st 155 L a5 157 155 ¢ i r r
Chloroflexota (N = 1,910) Model Size Model Size 10% 10%
[ Cyanobacteriota (N = 1,830) FLOPs
[ Verrucomicrobiota (N = 1,722) FLOPs @8 x 10 @2x10" ®4x10" ®8x 10"
|| Planctomycetota (N = 1,664) Optima © Transformer++ ¢>Mamba = Hyena ¢ StripedHyena
|__|Other phylum (N = 16,643)

Fig. 1. Pretraining a genomic foundation model across prokaryaotic life.
(A) A model of genome sequences at single-nucleotide resolution could learn all of the

information encoded in regulatory DNA and in the sequences of the other modalities

within the central dogma (proteins, coding RNA, and ncRNA). Even further, it could learn
covariation involving multiple genes and regulatory elements. The status of DNA as the
fundamental layer of biological information makes it a productive modality at which to
develop a biological foundation model. (B)A model that predicts the likelihood of the next
token given a sequence of tokens, referred to as autoregressive modeling, can learn complex
patterns underlying DNA sequences. StripedHyena is a deep signal processing architecture
for long sequences, obtained by hybridizing attention and hyena operators. GLU, gated
linear units. (C) We pretrained Evo, a 7-billion-parameter model with the StripedHyena
architecture, on bacterial genome sequences from GTDB and IMG/PR and viral sequences
from IMG/VR, excluding sequences from viruses that infect eukaryotic hosts. (D) A
histogram depicting the sequence length of the genomes in GTDB. mb, megabases. (E)

Pie charts depicting the taxonomic makeup of GTDB based on the kingdom (left) and
phylum (right). (F) Results from a first-of-its-kind scaling laws analysis for large-scale DNA
pretraining. Models improve monotonically with scale, with significant differences between
architectures. Eval. PPL, evaluation perplexity. (G) To determine optimal architecture and
scaling for Evo, we compared scaling rates of different models pretrained on the compute-
optimal frontier, i.e., with optimal allocation of compute between dataset size and model
size.
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Fig. 2. Evo learnsfunction across proteins, ncRNAs, and regulatory DNA.
(A) We obtained DMS datasets in which many mutations are made to a protein and a

corresponding fitness score is experimentally measured for each protein variant. On the
same set of mutated sequences, we compute its likelihood (or pseudolikelihood) under

a protein language model or a nucleotide language model (LM). We then correlated

these likelihoods with the experimental fitness measurements and used the strength of the
correlation to measure the performance of zero-shot function prediction. (B) Correlation
between zero-shot language model likelihoods or pseudolikelihoods and experimental fitness
across nine prokaryotic protein DMS datasets. Bar height indicates the mean; each dot
indicates a different DMS study. Nucl. Trans., Nucleotide Transformer. (C) We obtained
datasets in which many mutations are made to a ncRNA and a corresponding fitness score is
experimentally measured. Predictive performance is measured as in the method described in
(A). (D) Correlation between zero-shot language model likelihoods or pseudolikelihoods
and experimental fitness across seven ncRNA DMS datasets. Bar height indicates the

mean; each dot indicates a different DMS study. (E) We obtained datasets in which many
regulatory DNA sequences were measured for their effect on mRNA or protein expression.
(F) Correlation between promoter activity across four studies and zero-shot language model
likelihoods, sequence GC content, or supervised models. The supervised models include
ridge regression or a CNN trained on one-hot embeddings or Evo embeddings, as well as

a state-of-the-art supervised biophysical model of promoter activity, Promoter Calculator
(52). Supervised models are evaluated in an out-of-domain prediction setting (Materials and
methods). Ridge reg., ridge regression. Bar height indicates the mean; each dot indicates
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a different promoter activity study. (G) We obtaineda dataset in which Kosuri et a/. (56)
measured protein expression of a gene downstream of ~12,000 promoter-RBS pairs in E£.
coli. When provided with both the promoter and RBS sequences, Evo has higher predictive
performance of protein expression compared with zero-shot sequence statistics or a method
trained with some supervision to predict protein expression data from mRNA sequence.
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Fig. 3. Fine-tuning on CRISPR-Cas sequences enables gener ative design of protein-RNA
complexes.

(A) Design task: Generating sequences encoding CRISPR-Cas defense complexes composed
of protein and ncRNA components. (B) Fine-tuning Evo on 8-kb-length genomic sequences
containing CRISPR-Cas systems after its initial 8k pretraining phase. Special conditioning
tokens (“cas9,” “cas12,” or “cas13”) prepended to the beginning of each sequence during
fine-tuning. (C) When prompting with the token for a given type of Cas protein, the most
common Cas protein found in the resulting generated sequences corresponds to that token
prompt (Materials and methods). (D) Histograms representing the distribution of percentage
identity of a generated Cas protein sequence to any Cas protein sequence in the training
dataset. Samples from a model trained only on CRISPR-Cas sequences (top) and samples
from a model fine-tuned on CRISPR-Cas off the base Evo model (bottom). Both models
were trained on CRISPR-Cas sequences using the same hyperparameters. (E) Annotated
core protein-coding genes and ncRNA components found in type Il CRISPR systems in the
EvoCas9-1 locus as determined by pHMMs and CRISPR ncRNA prediction algorithms.
(F) Time course results for SpCas9 and EvoCas9-1 cleavage reactions after incubation with
cognate sgRNAs and 1 nM DNA target at a 10:10:1 molar ratio of Cas9:sgRNA:target.
Nontargeting guide RNA used to verify in vitro cleavage specificity. (G) Predicted
secondary structure of the sgRNA from the EvoCas9-1 generation. Secondary structure
differences between the EvoCas9-1 sgRNA and the SpCas9 sgRNA are highlighted in red.
(H) AlphaFold3 (AF3) structure prediction of EvoCas9-1 aligned to the crystal structure of
SpCas9 (PDB: 4008). (1) AlphaFold3 (AF3) structure prediction of the EvoCas9-1 sgRNA
aligned to the crystal structure (PDB: 4008) of the SpCas9 sgRNA (79 nt scaffold + 20 nt
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spacer). nt, nucleotide. (J) AlphaFold3 (AF3) structure prediction of EvoCas9-1 in complex
with its codesigned sgRNA (81 nt scaffold + 20 nt spacer).
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Fig. 4. Fine-tuning on | S200/1 S605 sequences enables gener ative design of transposable biological
systems.

(A) 1S200 and 1S605 MGEs contain a TnpA transposase and are flanked by left and right
end terminal hairpins that interact with the TnpA to accomplish transposition. 1S605 MGEs
additionally encode a TnpB-wRNA complex that performs DNA cleavage. Our design task
is to produce sequences that contain these DNA, ncRNA, and protein components. (B)

We fine-tuned Evo, after its initial 8k pretraining phase, on natural sequences containing
1S200/1S605 systems. (C) Histograms representing the distribution of the percentage identity
of Evo-generated ThpA and TnpB proteins to their best match in the fine-tuning set of
natural TnpA and TnpB proteins. (D) Schematic of the in vitro assay for evaluating designed
TnpA activity on codesigned DNA ends. Excision will produce a band corresponding to
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the formation of the RE-LE junction in the resulting circular product, and (re-)insertion
will produce a band from the joining of two ssDNA substrates, both detectable by a

single PCR. (E) Schematic of the Evo-generated 1S200-like system, ISEvol, containing
element annotations and its relevant DNA and protein features. (F) A 2% agarose gel

with SYBR Gold showing that ISEvol TnpA functions in vitro on ssSDNA substrates,
requiring the catalytically active tyrosine (Y124) and with substantially reduced activity on
dsDNA substrates. (G) Example reads from nanopore sequencing of PCR products from
the ISEvol TnpA in vitro assay. (H) Schematic of the Evo-generated 1S605-like system,
ISEvo2, containing element annotations and its relevant DNA, RNA, and protein features.
(I A 2% agarose gel with SYBR Gold showing that ISEvo2 TnpA functions in vitro on
ssDNA substrates, requiring the catalytically active tyrosine (Y125) and with substantially
reduced activity on dsDNA substrates. (J) Example reads from nanopore sequencing of PCR
products from the ISEvo2 TnpA in vitro assay.
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Fig. 5. Evo learns mutational effects on organismal fitness across diver se bacterial and phage
genomes.

(A) For genome-scale prediction and generation tasks, we first pretrained Evo on sequences
with 8192 tokens and then extended its context window size in a second pretraining phase

to sequences of 131,072 tokens. (B) We performed an in silico, genome-wide mutagenesis
screen in which we introduced premature stop codons at each coding sequence in a genome.
We computed the language model (LM) likelihood of the mutated gene sequence plus some
amount of additional genomic context (up to 66 kb). We then took the ratio of this likelihood
to the likelihood of the unmutated sequence. We tested whether these likelihood ratios would
be predictive of gene essentiality. (C) Violin and strip plots of the distribution of the strength
of gene essentiality prediction across 58 studies (each dot corresponds to a different study),
in which each study conducted a genome-wide essentiality screen in a bacterial (N = 56)

or phage (V= 2) species. We measured predictive performance as the AUROC in which

the LM likelihood ratio is used to predict a binary label of “essential” or “nonessential.”
“Gene-only context” indicates that the model is provided with only the gene sequence and
no additional flanking genomic context. “8k context” and “66k context” indicate that the
LM is provided with the gene sequence and flanking genomic context up to a total of

8192 or 65,536 tokens, respectively. Evo has some predictive performance with gene-only
context, has vastly improved performance from gene-only to 8k context, and some outlier
improvements from 8k to 66k context. (D) Histograms representing the distributions of the
log of the likelihood ratios (“Evo score”) for the essential genes (blue) and the nonessential
genes (yellow) in two genomes: lambda phage (top) and £, aeruginosa (bottom). These
results are based on providing Evo with 66k context.
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Fig. 6. Evo gener ates megabase-scale sequences with plausible genomic architecture.
(A) We prompted Evo with species-level tokens used during the second pretraining stage.

We use bacterial species prompts and generate sequences of ~650 kb in length. (B)
Histograms depicting the distribution of coding density scores among 131-kb crops of
sequences generated by Evo (“Evo generated”), sequences from natural bacteria (“natural
genomes”), or sequences in which the four base pairs were sampled uniformly at random
(“random sequences”). (C) Arrow plots depicting the organization of coding sequences on
an example 131-kb sequence generated by Evo, derived from a natural genome, or sampled
randomly. Coding sequences are depicted as arrows in which the horizontal length of the
arrow corresponds to the genomic interval and the direction of the arrow indicates the strand.
The top and bottom rows of arrows indicate the 5'-to-3” and 3’-to-5" strands, respectively,
and the Evo-generated sequence was designated as the 5'-to-3” strand. Both Evo-generated
and natural genomes exhibit operon-like structure in which clusters of colocated genes are
on the same strand. (D and E) An ~1-Mb generated sequence is represented as an arrow
plot, as in (C). Below this arrow plot are ESMFold structure predictions of all protein
coding sequences from 100 through 1024 amino acids in length, as identified by Prodigal.
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Structure predictions are aligned to natural proteins, which are then mapped to associated
GO molecular function terms (Materials and methods). The largest GO categories are
displayed as clusters alongside a large cluster containing all other proteins. ATP, adenosine
triphosphate. (F) Log, of TUDs of Evo-generated versus natural genomes for each species
prompt. Statistics are the Pearson correlation coefficient test. Shaded regions indicate a 95%
confidence interval. (G) Hierarchical clustering of Evo-generated and natural genomes based
on Euclidean distances of the TUDs. (H) Percent usage of each stop codon in all three
reading frames of Evo-generated, natural, and random ORFs.
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