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INTRODUCTION: The fundamental instructions of life are encoded in the DNA sequences of 

all living organisms. Understanding these instructions could unlock deeper insights into biological 

processes and enable new ways to reprogram biology into useful technologies. However, even the 

simplest microbial genomes are incredibly complex, with millions of DNA base pairs encoding 

the interplay of DNA, RNA, and proteins—the three modalities of the so-called central dogma 

of molecular biology and the key actors in cellular function. This complexity exists at multiple 

scales, from individual molecules to whole genomes, representing a vast landscape of genetic 

information that has been functionally selected over evolutionary time.

RATIONALE: Rapid progress in artificial intelligence (AI) has led to large language models that 

demonstrate increasingly advanced multitask reasoning and generation capabilities when trained 

on massive amounts of data. However, technological limitations in the architecture of these models 

have restricted efforts to apply them to biology at a similar scale. Current approaches struggle 

to analyze sequences at the individual character level and are computationally demanding when 

applied to long sequences. An advanced model maintaining single-nucleotide resolution over large 

genomic sequences could potentially extract functional information about the complex molecular 

interactions that are embedded in the patterns of natural evolutionary variation.

RESULTS: In this work, we present Evo, a genomic foundation model that enables prediction 

and generation tasks from the molecular to the genome scale. Using an architecture based on 

advances in deep signal processing, we scaled Evo to 7 billion parameters with a context length 

of 131 kilobases at single-nucleotide resolution. We report scaling laws on DNA, complementing 

similar observations in natural language and vision. Trained on 2.7 million prokaryotic and 

phage genomes, Evo demonstrates zero-shot function prediction across DNA, RNA, and protein 

modalities that is competitive with—or outperforms—domain-specific language models. Evo 

also excels at multimodal generation tasks, which we demonstrated by generating synthetic 

CRISPR-Cas molecular complexes and transposable systems. We experimentally validated the 

functional activity of Evo-generated CRISPR-Cas molecular complexes as well as IS200 and 

IS605 transposable systems, representing the first examples of protein-RNA and protein-DNA 

codesign with a language model. Using information learned over whole genomes, Evo learns 

how small changes in nucleotide sequence affect whole-organism fitness and can generate DNA 

sequences with plausible genomic architecture more than 1 megabase in length.

CONCLUSION: Evo is a foundation model that is designed to capture two fundamental aspects 

of biology: the multimodality of the central dogma and the multiscale nature of evolution. The 

central dogma integrates DNA, RNA, and proteins with a unified code and predictable information 

flow, whereas evolution unifies the vastly different length scales of biological function represented 

by molecules, pathways, cells, and organisms. Evo learns both of these representations from the 

whole-genome sequences of millions of organisms to enable prediction and design tasks from 

the molecular to genome scale. Further development of large-scale biological sequence models 

like Evo, combined with advances in DNA synthesis and genome engineering, will accelerate our 

ability to engineer life.

Abstract

The genome is a sequence that encodes the DNA, RNA, and proteins that orchestrate an 

organism’s function. We present Evo, a long-context genomic foundation model with a frontier 

architecture trained on millions of prokaryotic and phage genomes, and report scaling laws on 

Nguyen et al. Page 2

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DNA to complement observations in language and vision. Evo generalizes across DNA, RNA, 

and proteins, enabling zero-shot function prediction competitive with domain-specific language 

models and the generation of functional CRISPR-Cas and transposon systems, representing the 

first examples of protein-RNA and protein-DNA codesign with a language model. Evo also learns 

how small mutations affect whole-organism fitness and generates megabase-scale sequences with 

plausible genomic architecture. These prediction and generation capabilities span molecular to 

genomic scales of complexity, advancing our understanding and control of biology.

Graphical Abstract

Evo, a 7-billion-parameter genomic foundation model, learns biological complexity from 
individual nucleotides to whole genomes. Trained on 2.7 million raw prokaryotic and phage 

genome sequences, Evo is naturally multimodal, enabling the codesign of DNA, RNA, and protein 

molecules that form higher-order functional systems. Evo is also inherently multiscale, enabling 

prediction and generation tasks at the level of molecules, systems, and genomes.

DNA is the fundamental layer of biological information that is responsible for transmitting 

the results of evolution across generations of life (1–3). Evolutionary variation in genome 

sequences reflects adaptation and selection for biological function at the phenotypic level 

(4). Rapid advances in DNA sequencing technologies have enabled the systematic mapping 

of this evolutionary diversity at the whole-genome scale.

A machine that learns this breadth of information across genomes could model the function 

of DNA, RNA, and proteins as well as their diverse interactions that orchestrate complex 

biological functions, mediate disease, or create a complete organism. Modern machine 
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learning algorithms combined with massive datasets of genomic sequences could enable a 

general biological foundation model that learns the intrinsic logic of whole genomes.

However, current efforts to model molecular biology with machine learning have been 

Focused on creating modality-specific models that are specialized to proteins, coding 

sequences, RNA, or regulatory DNA (5–9). In addition, generative applications in biology 

have been limited to the design of single molecules, simple complexes (10–12), or 

short DNA sequences (13, 14). By contrast, complex biological processes, such as gene 

regulation, CRISPR immunity, or genetic transposition, rely on many interactions involving 

molecules across multiple modalities.

A DNA model that unifies information across the molecular, systems, and genome scales 

could learn from large genomic regions to capture systems-wide interactions and enable 

the design of more-sophisticated biological functions. By operating at single-nucleotide 

resolution, this model would be able to incorporate the evolutionary effects of sequence 

variation, such as individual single-nucleotide mutations, that can completely alter organism 

function.

Inspired by the recent success of large language models, many approaches have applied 

similar modeling techniques to biological sequences. However, existing attempts to model 

DNA as a language (15–17) are limited by the prevailing dense Transformer architecture, 

which incurs high computational cost as input sequence lengths grow relative to model 

width (scaling quadratically) and generally underperforms at single-nucleotide or byte-level 

resolution compared with models trained at coarser resolutions (18). Recent algorithmic 

advances in extending context length of attention-based models (19, 20) have similar 

resolution limitations. As a result, Transformer-based DNA models are constrained to short 

context lengths and use schemes that aggregate nucleotides into the basic units of language 

models, called tokens, thereby sacrificing single-nucleotide resolution (15, 16, 21–23).

We present Evo, a 7-billion-parameter genomic foundation model trained to generate DNA 

sequences at whole-genome scale. Evo uses a context length of 131,072 tokens and is 

based on the StripedHyena architecture (24), which hybridizes attention and data-controlled 

convolutional operators to efficiently process and recall patterns in long sequences. Evo is 

trained on a prokaryotic whole-genome dataset consisting of 300 billion nucleotides and 

uses a byte-level, single-nucleotide tokenizer. By conducting a scaling laws analysis for 

DNA pretraining, we observe predictable performance gain with larger scale.

We demonstrate that Evo can be used in both prediction and generation tasks at the 

molecular, systems, and genome scale. In zero-shot evaluations, Evo is competitive with 

protein language models at predicting the fitness effects of mutations on bacterial proteins, 

outperforms RNA language models in predicting fitness effects of mutations on noncoding 

RNAs (ncRNAs), and predicts how regulatory DNA sequence composition controls gene 

expression. Evo also learns the coevolutionary linkage of coding and noncoding sequences 

to design functional biological systems including CRISPR-Cas ribonucleoprotein complexes 

and transposable elements, requiring codesign of protein-RNA and protein-DNA systems, 

respectively.
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At the whole-genome scale, Evo understands how small mutations in genomes affect 

organismal fitness, indicating its ability to learn aspects of gene function within a broader 

genomic context. We also use Evo to generate genome-scale sequences with plausible high-

level architecture more than1 megabase (Mb) in length, a scale that is orders of magnitude 

greater than previous methods (10, 13, 14). Taken together, Evo establishes a foundational 

paradigm for predictive and generative biological modeling (Fig. 1A) that could enable a 

deeper understanding of biology and accelerate our ability to engineer life.

Modeling long sequences at nucleotide resolution with the StripedHyena 

architecture

Evo is a genomic foundation model with 7 billion parameters trained with a context length 

of up to 131,072 tokens, using single-nucleotide, byte-level tokenization. To model long 

sequences at nucleotide resolution efficiently, we leveraged the StripedHyena architecture 

(24) (Fig. 1B) that builds on emerging techniques in deep signal processing (25–28). The 

model is a hybrid of 29 layers of data-controlled convolutional operators (hyena layers) 

interleaved with three layers (10%) of multihead attention equipped with rotary position 

embeddings (RoPEs) (29) (table S1 and Materials and methods).

Hyena layers process sequences in an input-dependent manner using compositions of short 

and long convolution filters (Fig. 1B), making the layer especially effective at filtering 

noisy patterns that can occur in DNA and at aggregating individual nucleotides into motifs. 

Model hybridization, first proposed to address shortcomings of state-space models (30–32), 

has recently been shown to improve scaling performance on language modeling of both 

standalone Hyena and Transformer architectures (24). Compared with HyenaDNA (33), a 

previous generation of DNA models leveraging a Hyena architecture (34), Evo is based on 

an improved hybrid design and scaled to 1000× larger model size and 100× more data.

Training Evo at scale on OpenGenome

We compiled a large genome dataset called OpenGenome (Materials and methods) with 

more than 80,000 bacterial and archaeal genomes and millions of predicted phage and 

plasmid sequences, covering 300 billion nucleotide tokens (Fig. 1, C to E; fig. S1; and table 

S2) (35–37). For safety considerations, we excluded viral genomes that infect eukaryotic 

hosts. Like most language models, Evo is pretrained using a next-token prediction objective 

on raw genome sequences with no explicit supervision or annotations. Pretraining involved a 

first stage usinga context length of 8192 tokens and a second context-extension stage using a 

context length of 131,072 tokens.

StripedHyena demonstrates favorable scaling laws on DNA sequence data

Aiding our model design, we performed a scaling laws analysis for DNA sequence modeling 

to determine the relationship between training, architectural details, and performance 

metrics through a systematic experimental protocol (38, 39). Once a set of scaling laws 

is obtained, it can then be used as a guide to optimally scale training to larger models and 

datasets.
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We compare different classes of architectures using a compute-optimal protocol, aimed at 

evaluating results on the compute-optimal frontier (Materials and methods). We trained 

more than 300 models across four architectures: Transformer++, Mamba, Hyena, and 

StripedHyena (table S3). Transformer++ is a state-of-the-art Transformer, and Mamba is 

a modern architecture using data-controlled state-space models (40).

We found Transformer++ to yield substantially worse perplexity (a measure of next 

token prediction quality) at all compute budgets (Fig. 1, F and G), a symptom of the 

inefficiency of the architecture at the byte resolution. Both state-space and deep signal 

processing architectures had an improved scaling rate over Transformer++, with Hyena and 

StripedHyena resulting in the best scaling rate. We observed stable training for StripedHyena 

throughout all the studied model sizes and learning rates during the scaling analysis.

We also compare architecture performance outside the compute-optimal frontier, namely 

with allocations of the computational budget that may be suboptimal. Performance outside 

the compute-optimal frontier is important in practice, as most models (including Evo) are 

trained for more tokens than recommended by compute-optimal scaling laws. We estimate 

250 billion to be the compute-optimal number of tokens for Evo 7B given the floating 

point operation (FLOP) budget, meaning the model was trained at a 17% offset from 

the compute-optimal model size during the initial 8192 sequence length pretraining phase 

of 300 billion tokens. Both Transformer++ and Mamba experienced numerical instability 

during training and suffered from a higher performance degradation of the scaling rate 

outside the compute-optimal frontier, in contrast to StripedHyena (figs. S3 to S7). These 

findings motivate the choice of StripedHyena as the architecture for Evo.

Evo learns across DNA, RNA, and protein modalities

Predicting mutational effects on protein function

Beyond evaluating perplexity, we next investigated the model’s zero-shot performance on 

biologically relevant downstream tasks. For example, language models specifically trained 

on large corpuses of protein sequences or nucleotide coding sequences have demonstrated 

an ability to predict mutational effects on protein function (41–43) without any task-specific 

fine-tuning or supervision. Because Evo’s training data contains protein coding sequences, 

we tested whether the model could also perform zero-shot protein function prediction. 

Notably, Evo is trained on genomic sequences without any explicit coding sequence 

annotations.

Following work in evaluation of protein language models, we leveraged deep mutational 

scanning (DMS) studies, which introduce an exhaustive set of mutations to a protein coding 

sequence and then experimentally measure the effects of these mutations on various fitness 

metrics, which quantify functional activity (42, 44, 45). The language-model likelihood or 

pseudolikelihood (Materials and methods) of the amino acid sequence is used to predict the 

experimental fitness score (Fig. 2A). To adapt this task to nucleotide sequences, we use the 

wild-type coding sequence and nucleotide mutations reported in the original DMS studies 

(Materials and methods).
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On DMS datasets of prokaryotic proteins, Evo’s zero-shot performance exceeded all 

other nucleotide models tested (Fig. 2B and table S4), including GenSLM (15)—a model 

explicitly trained only on coding sequences with a codon vocabulary (Fig. 1A). Evo also 

reaches competitive performance with leading protein-specific language models (41, 46–48) 

(Fig. 2B). Previous work has shown that improvement beyond this performance range is 

difficult for protein language models with self-supervised pretraining alone (49), indicating 

that Evo is already competitive with state-of-the-art protein language modeling on bacterial 

proteins. On DMS datasets of human proteins, Evo is unable to predict mutational effects on 

fitness (fig. S8A and table S5), most likely because the pretraining dataset is composed of 

prokaryotic sequences. However, we observed a strong association between language-model 

perplexity on the wild-type sequence and fitness prediction performance (fig. S8B), which 

indicates that additional fine-tuning or future pretraining on mammalian coding sequences 

could improve Evo’s performance beyond bacterial proteins.

Predicting mutational effects on ncRNA function

Next, we tested whether the same pretrained model could learn functional information about 

ncRNAs, such as tRNAs, ribosomal RNAs (rRNAs), and ribozymes. We collected ncRNA 

DMS datasets (Materials and methods) and evaluated Evo’s ability to perform zero-shot 

ncRNA fitness prediction using the results of experimental ncRNA DMS studies as the 

ground truth score (Fig. 2C).

We found that Evo again outperforms all other tested nucleotide language models at this 

task, including RNA-FM (50), an RNA language model that is explicitly trained on ncRNA 

sequences (Fig. 2D and table S6). We observed especially strong predictive performance 

on a study that measured the effects of mutations to the 5S rRNA on the growth rate 

of Escherichia coli (Spearman correlation coefficient r = 0.60, two-sided t-distributed P = 

1.9 × 10−3) (51). Beyond protein sequences, these results demonstrate that Evo can learn 

mutational effects on ncRNA function.

Predicting activity of regulatory DNA

Given that Evo’s training also contains prokaryotic regulatory DNA sequences, we 

investigated whether Evo has learned information that is useful for regulatory DNA tasks. 

We focused on predicting gene expression from promoter sequences and protein expression 

from sequences of ribosome-binding sites (RBSs) (Fig. 2E).

For supervised promoter activity prediction, we followed a previous study (52) in which a 

regression model is developed using train and validation splits from a single study, and the 

final model is then tested on promoter datasets from other studies to assess out-of-domain 

generalizability (Materials and methods). We used the three test datasets from LaFleur et al. 
(52–55) and a dataset in which Kosuri et al. constructed ~12,000 combinations of common 

promoters and RBSs and measured the corresponding mRNA expression of a reporter gene 

for each promoter-RBS pair in E. coli (56).

Evo’s zero-shot likelihoods had non-negligible correlation with promoter activity across 

these four studies (mean Spearman r = 0.43). These correlations also exceed those of 

the sequence guanine-cytosine (GC) content (mean Spearman r = 0.35) and the zero-
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shot likelihoods of GenSLM (mean Spearman r = 0.09) (Fig. 2F and table S7). We 

also trained two supervised models, a ridge regression linear model and a convolutional 

neural network (CNN), on either Evo embeddings or one-hot-encoded sequence. The CNN 

architecture substantially outperformed ridge regression across both embeddings, and the 

Evo embeddings substantially outperformed one-hot embeddings across both architectures 

(Fig. 2F and table S7). Notably, even zero-shot Evo likelihoods had comparable predictive 

performance (mean Spearman r = 0.43) to a CNN trained on one-hot embeddings (mean 

Spearman r = 0.44), which indicates that Evo’s pretraining contributes useful information 

to function prediction. Combining the Evo embeddings with a supervised CNN architecture 

(mean Spearman r = 0.56) also approached the performance of Promoter Calculator (52), 

a state-of-the-art method for promoter activity prediction (mean Spearman r = 0.62). These 

results indicate that Evo has learned sequence-intrinsic information that is a useful correlate 

of promoter activity and motivates improving zero-shot learning within the foundation 

model to improve downstream performance in specific, supervised tasks.

For protein expression prediction, we used the dataset collected by Kosuri et al. (56), which 

contains RBSs in addition to promoters and which also measured protein expression in 

addition to mRNA expression. Evo’s zero-shot likelihoods of the RBS sequence alone had 

weak correlation with protein expression (Spearman r = 0.17). However, when concatenating 

the promoter and RBS sequence together, Evo’s zero-shot likelihoods improved substantially 

(Spearman r = 0.61); this correlation is also higher than the zero-shot correlation of 

just the promoter sequence alone (Spearman r = 0.47), which indicates that additional 

regulatory sequence could provide useful functional context. Evo’s zero-shot correlation 

on promoter-RBS sequences is also higher than the GC content of the promoter-RBS 

sequences (Spearman r = 0.47), zero-shot GenSLM likelihoods (Spearman r = 0.11), and 

RBS Calculator (Spearman r = 0.39)—a state-of-the-art protein expression predictor (Fig. 

2G) (57, 58).

Overall, we show how a single model can perform well on tasks that have previously 

been accomplished by different, domain-specific models. Despite being trained on long 

genomic sequences without explicit annotations, Evo demonstrates a robust and general 

understanding of the constitutive protein coding sequences, ncRNA sequences, and 

regulatory elements.

Generative design of CRISPR-Cas molecular complexes

Next, we reasoned that Evo should be able to generate functional complexes that involve 

interactions between distinct molecular modalities. In prokaryotes, functionally related 

genes are generally organized into operons and located next to each other on the genome 

sequence. Because Evo learns covariation patterns involving any genetic elements within 

its context window, the model should understand interactions between encoded protein 

and ncRNA molecules. To demonstrate this capability, we fine-tuned Evo on a dataset 

of genomic loci containing CRISPR-Cas sequences—molecular machines that consist of 

protein and ncRNA components that, together, direct adaptive immunity against viral 

infection (59).
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The DNA-targeting Cas9 nuclease is typically encoded within 3000 to 4800 base pairs (bp) 

of coding sequence and found in close genomic proximity to its cognate CRISPR array 

(60). Transcription from the CRISPR array generates noncoding CRISPR RNA (crRNA) 

molecules that are bound by the Cas protein to generate a functional defense complex 

that is required for sequence-specific DNA targeting (Fig. 3A). For Cas9 in particular, a 

second trans-activating CRISPR RNA (tracrRNA) forms a duplex with the crRNA to create 

a full guide RNA (gRNA). Diverse families of CRISPR-Cas systems are found throughout 

bacterial and archaeal life, such as Cas12- or Cas13-based systems that target DNA and 

RNA, respectively (61).

We fine-tuned Evo on 72,831 CRISPR-Cas loci extracted from public metagenomic and 

genomic sequences, adding special prompt tokens for Cas9, Cas12, and Cas13 that were 

prepended to the beginning of each training sequence (Fig. 3B). During sampling, these 

tokens allow us to guide generation of a specific CRISPR-Cas system type by prompting 

with the corresponding special token. Sampling 8-kb sequences using each of the three 

Cas token prompts resulted in coherent generations containing Cas coding sequences and 

CRISPR arrays corresponding to the expected subtype (Fig. 3C and Materials and methods). 

Evo generations were classified as Cas9, Cas12, or Cas13 sequences if they contained a 

CRISPR array detected with the MinCED package and an open reading frame (ORF) that 

returns a positive hit using a Cas9, Cas12, or Cas13 profile hidden Markov model (pHMM), 

with a significance threshold of an E value < 1 × 10−3. Sequence alignment with the training 

dataset revealed that some of the predicted ORFs that returned a positive hit using a Cas9 

pHMM also exhibited <40% protein sequence identity to the closest natural Cas9 (Fig. 3D). 

We also found that the Evo model fine-tuned on CRISPR-Cas loci produces higher quality 

and more diverse generations across all Cas subtypes compared with a model trained solely 

on CRISPR-Cas sequences (Fig. 3D and Materials and methods).

Next, we filtered ~2 million Evo-generated sequences for Cas9 loci that contained a Cas9 

ORF with RuvC and HNH domains, a CRISPR repeat array, and a detectable tracrRNA 

sequence (fig. S9), selecting 11 Cas9 systems with robust predicted local distance difference 

test (pLDDT) scores for functional validation. These samples contain conserved CRISPR-

associated genes such as Cas1 and Cas2 involved in CRISPR adaptation, and the positional 

entropies from the fine-tuned Evo model delimit the boundaries of the protein-coding genes 

within the locus as well as the noncoding CRISPR repeat motifs (Fig. 3E).

We evaluated the 11 Cas9 generations using an initial in vitro transcription-translation assay 

followed by the introduction of a DNA target containing an NGG protospacer adjacent 

motif (PAM) sequence (fig. S14). One of the generations exhibited robust activity, which 

we named EvoCas9–1. Recombinant expression and purification of EvoCas9–1 paired with 

chemically synthesized Evo-generated single guide RNA (sgRNA) exhibited comparable in 

vitro cleavage activity to SpCas9 paired with the canonical SpCas9 sgRNA (Fig. 3F) (62, 

63). We further observed that the Evo-generated sgRNA also improved cleavage efficiency 

of SpCas9 when compared with a canonical SpCas9 sgRNA (fig. S15 and Materials and 

methods).
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The EvoCas9–1 amino acid sequence shares 79.9% identity with the closest Cas9 in the 

database of Cas proteins used for model fine-tuning and 73.1% identity with SpCas9. Evo-

designed sgRNA is 91.1% identical to the canonical SpCas9 sgRNA and exhibits secondary 

structure differences in the two terminal stem loops, notably extending the length of stem 

loops 2 and 3 (Fig. 3G). Although the predicted backbone structure of EvoCas9–1 resembles 

that of SpCas9, the predicted structure of EvoCas9–1 exhibits a more positive surface charge 

distribution (Fig. 3H and fig. S16B). The isolated sgRNA structures from the SpCas9 crystal 

structure and the structure of the EvoCas9–1 sgRNA predicted by the AlphaFold3 model 

(64) show strong agreement in RNA secondary structure (Fig. 3I). The AlphaFold3 cofolded 

structure prediction for EvoCas9–1 has a high mean pLDDT score of 90 across its protein, 

RNA, and DNA components (Fig. 3J).

EvoCas9–1 was generated from just 11 code-signs, representing a robust success rate 

given the complexity of Cas9’s multistep mechanism (fig. S14), which requires intricate 

coordination of protein domains and nucleic acid interactions. Furthermore, the diverse 

generations were tested on a single NGG PAM, and this sequence preference is known to 

vary across Cas9 orthologs.

Designing new Cas systems currently relies on mining sequence databases for homologous 

proteins, where natural evolution provides functional diversity. By leveraging Evo’s inherent 

multimodal capabilities, we can codesign protein-RNA complexes with a single language 

model, providing a design methodology that can be harnessed across the broad diversity 

of CRISPR systems and expanding the repertoire of CRISPR technologies beyond what is 

found in nature.

Generative design of transposon systems

In addition to molecular complexes, Evo learns patterns underlying multigene systems. 

Mobile genetic elements (MGEs) are biological systems that often contain multiple genes 

and are found throughout all domains of life. Their opportunistic spread drives sequence 

variation, new gene function, and even speciation (65). The IS200/IS605 family of MGEs 

spreads through “peel-and-paste” transposition catalyzed by the homodimeric transposase 

TnpA interacting with terminal hairpins at the left end (LE) and right end (RE) of the 

element. The insertion sequence (IS) is excised from single-stranded DNA (ssDNA) as a 

circular product containing an RE-LE junction, which serves as an intermediate for insertion 

into a new ssDNA target site. IS605 elements additionally contain an RNA-guided TnpB 

nuclease and a cognate ωRNA that bias the selfish inheritance of the transposable element 

(Fig. 4A) (66–69). The ability to generate new MGEs could improve our understanding of 

their biological function and enable the design of more effective genome engineering tools.

We fine-tuned Evo on 10,720 IS605 elements and 219,866 IS200 elements in their natural 

sequence context (Fig. 4B and Materials and methods). We next calculated the entropy of 

the conditional probabilities at each position across natural IS200/IS605 loci (fig. S18) and 

observed a sharp and sustained increase in entropy corresponding with the 3′ end of the 

element in particular, indicating that Evo learned a representation of the MGE boundaries. 

Beyond first-order positional statistics, we also observed that the model learns pairwise 
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relationships between positions in the sequence using a “categorical Jacobian” analysis (70), 

in which we vary the value of each position in the input sequence and measure the resulting 

changes in the model outputs at all positions. We observed that the model uses information 

from one end to specify the other end across a distance of ~1 to 2 kb, reflecting the model’s 

understanding of the tight evolutionary linkage of the two terminal elements (fig. S19).

Using special prompt tokens, we used the fine-tuned model to generate IS200 or IS605 

elements (fig. S18A). TnpA and TnpB proteins that were detected within these generated 

sequences varied widely in their distance from the nearest examples in the training set (Fig. 

4C), with consistently high ESMFold pLDDT values for predicted structures that were >40 

to 50% identity to the training set (fig. S18B) and a sequence length distribution that closely 

matched proteins in the training set (fig. S18C).

To select sequences for experimental validation, we filtered by similarity to natural systems 

(ISSpn6, ISStin10, ISHp608, and ISDge10) as well as TnpA protein–level and DNA 

sequence–level features (fig. S20) and experimentally tested 24 IS200-like and 24 IS605-

like designs in vitro. We assay for TnpA-mediated excision and insertion by incubating 

TnpA protein produced through in vitro transcription-translation with a ssDNA substrate 

containing the putative left and right ends, followed by a polymerase chain reaction (PCR) 

with outward-facing primers. If excision occurs, a band is produced from the formation of 

the RE-LE junction. If the donor contains other target sites and insertion also occurs, bands 

are produced from the joining of the two ssDNA substrates by the same PCR reaction (Fig. 

4D).

We observed that 11 out of 24 Evo-generated IS200-like elements and 3 out of 24 Evo-

generated IS605-like elements demonstrated evidence for both excision and insertion in 

vitro (Fig. 4E to J, and fig. S21). This activity was also dependent on the presence of a 

putative catalytic tyrosine and on having a ssDNA substrate instead of double-stranded DNA 

(dsDNA), consistent with the known mechanism for IS200/IS605 TnpA (Fig. 4, F and I). 

To identify the precise boundaries of each element, we performed nanopore sequencing 

of the PCR products (Fig. 4, G and J, and figs. S22 and S23). As a control, we tested 

the natural IS200 element ISSpn6 and IS605 element ISHp608, and in both cases, we 

successfully detected the ISFinder-annotated boundaries (71), additionally revealing that the 

ISSpn6 TnpA can also mobilize using additional left and right ends within the locus (fig. 

S24). Three of our generated elements also appeared to mobilize using more than one left or 

right end pair (figs. S23, S25, and S26). The functional IS605-like elements, which contain 

putative TnpB coding sequences, also contain sequences with significant matches (cmsearch 

E value < 0.001) to a covariance model constructed from known ωRNAs (Fig. 4E and fig. 

S26). As a whole, the 14 active elements use a diverse set of hairpins (Fig. 4, E and H, and 

figs. S25 and S26) and encode functional TnpA proteins with sequence identity as low as 

67% to the fine-tuning database.

These generative results are notable given that successful transposition requires TnpA 

proteins that functionally dimerize, TnpA dimer interactions with DNA hairpins in the 

LE and RE, base pairing between the LE and RE hairpins and the target site, and 

strand cleavage and exchange. Despite the complexity of this mechanism, we observed 
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a high design success rate, nearing 50% for the IS200-like systems. Generative design 

and diversification of this functional class of MGEs could explore regimes of high 

activity unconstrained by natural evolutionary pressure on transposon fitness, expanding 

our understanding of transposase protein requirements and enabling biotechnological 

applications.

Learning gene essentiality with long genomic context

Beyond the molecular or systems level, we designed Evo to be capable of analyzing whole 

genomes. We conducted a second stage of pretraining in which Evo processed sequences 

with 131,072-token context (Fig. 5A) that also contained species-specific tokens. This stage 

used data from the genome taxonomy database (GTDB) and a subset of IMG/VR that 

excludes eukaryotic viruses (Fig. 1C, fig. S1, and Materials and methods). Evo maintains 

single-nucleotide resolution at its 131,072 context length, which is important because even 

a single-nucleotide mutation in an essential gene can be incompatible with life if it disrupts 

that gene’s expression or function (72).

To this end, we evaluated whether Evo would be sensitive to mutations in essential genes 

solely based on small changes in a long genomic sequence. We conducted an experiment 

in which we inserted premature stop codons at the beginning of each coding sequence in 

a given organism’s genome and measured the effects of these changes on Evo’s likelihood 

with respect to the likelihood of the wild-type sequence (Fig. 5B). When computing the 

changes to the mutant versus wild-type sequences, we evaluated Evo on the gene sequence 

alone (“gene-only context”) or the gene sequence with lanking context up to a total of 

8192 tokens (“8k context”) or 66,000 tokens (“66k context”) (Materials and methods). We 

hypothesized that mutations to essential genes would result in larger, more negative changes 

in log-likelihood compared with mutations to nonessential genes.

On a dataset of 56 whole-genome essentiality studies in bacteria from the DEG database 

(73) and two whole-genome essentiality studies in phage from Piya et al. (74), we 

observed that the changes in Evo log-likelihood with 66k context are significantly associated 

(Bonferroni-corrected permutation-based P < 0.05) with gene essentiality in 49 of 58 

genomes. We also observed that providing the model with additional genomic context 

beyond the gene sequence results in a substantial improvement in performance, especially 

from gene-only context to 8k context. From 8k to 66k context, the average predictive 

performance is comparable, although performance on the lower range of examples does 

improve with longer context (Fig. 5C and fig. S27, A and B). For a few genomes, the 

zero-shot performance with 66k context is notably strong, with an AUROC of 0.90 on 

lambda phage essentiality data (74) and an AUROC of 0.84 on Pseudomonas aeruginosa 
essentiality data (75) (Fig. 5D).

Evo likelihood changes are also indicative of gene essentiality when using different in silico 

mutagenesis strategies, such as varying the number of stop codons inserted or deleting the 

gene sequence entirely (fig. S27C and Materials and methods), though we did not attempt an 

exhaustive search of the best prompting strategy for this task. GenSLM, a codon language 
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model that had mild predictive performance of mutational effects on single-gene protein 

function (Fig. 2B), did not demonstrate sensitivity to gene essentiality (Fig. 5C).

As control analyses, we examined genome position and sequence conservation. A gene’s 

position in the genome showed no link to essentiality (Fig. 5C). We observed that more 

conserved sequences tended to be essential, with an association strength similar to that of 

Evo with gene-only context but weaker than that of Evo with genomic sequence context 

(Fig. 5C).

These results highlight the added value of Evo’s ability to consider genomic context when 

predicting gene essentiality. Together, these results demonstrate that Evo can learn how 

small mutations affect fitness at a whole-organism level across many bacterial and phage 

species, without any explicit genome annotations, task-specific training data, or functional 

labels. In contrast to protein or codon language models, Evo can learn how individual genes 

interact with a broader genomic context.

Generating DNA sequences at genome scale

Given Evo’s generative capabilities, we were interested in testing its generation quality at 

long sequence lengths without additional fine-tuning. We used Evo to sample 16 sequences 

each containing ~1 Mb, representing more than seven times the model’s context length of 

131 kb. For comparison, the smallest “minimal” bacterial genomes are ~580 kb in length 

(76). We prompted the model to generate bacterial genomes using the species-level tokens 

in the training dataset (Fig. 6A). To evaluate how closely our generated sequences resemble 

natural genomes, we used CheckM (77), a tool originally designed to assess the quality of 

bacterial DNA sequenced from nature. CheckM computes various metrics, including coding 

sequence density and the presence of highly conserved prokaryotic marker genes. We used 

these statistics to compare the key characteristics of our generated sequences with those of 

natural genomes.

Notably, Evo generated sequences have nearly the same coding densities as natural 

genomes, and substantially higher than that of random sequences (Fig. 6B). When 

visualized, both natural and generated sequences display similar patterns of coding 

organization (Fig. 6C), with sequences in close proximity typically found with the same 

strand orientation; in bacteria, these closely linked groups of coding sequences typically 

correspond to functionally tied gene clusters or operons. When using ESMFold to obtain 

protein structure predictions corresponding to these coding sequences, almost all showed 

predicted secondary structure and globular folds (Fig. 6, D and E, and fig. S28). Many 

proteins also showed structural similarity to natural proteins involved in fundamental 

molecular functions as annotated by gene ontology (GO) terms (Fig. 6, D and E). Across 

all our generated sequences representing ~16 Mb, Evo was also able to generate 128 tRNA 

sequences containing anticodons that correspond to all canonical amino acids (Fig. 6E).

We further observed that various genome-wide sequence patterns including the GC content, 

dinucleotide frequencies, and certain codon usage patterns more closely resembled those of 

natural genomes compared with random sequences (fig. S28, A to C). To assess the accuracy 
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of species-specific prompting, we calculated tetranucleotide usage deviations (TUDs), a 

strong indicator metric of phylogenetic relatedness (78). We found strong correlations 

between species-specific generations and their corresponding natural reference sequences, 

with TUDs sufficiently accurate to reconstruct natural phylogenetic relationships among 

the generated sequences (Fig. 6, F and G). We also examined stop codon frequencies 

across reading frames, a conserved genomic feature in prokaryotes (79). TGA and TAA 

stop codons appeared most frequently, whereas TAG was least common, consistent with 

previously observed patterns in prokaryotic genomes (Fig. 6H) (80). By contrast, random 

sequences showed an unbiased proportion of stop codons. These analyses collectively 

demonstrate that Evo’s generated sequences capture multiple layers of genomic signatures 

characteristic of natural prokaryotic genomes.

However, there are characteristics of these genomes that are unnatural. The generated 

sequences do not contain many highly conserved marker genes that typically indicate 

complete genomes and, across the ~16 Mb of sample sequence, Evo generated only three 

rRNAs (81). Many of the protein structure predictions are of low confidence, are biased 

toward evolutionarily simpler a-helical secondary structures (82), and have limited structural 

matches to any entry in a representative database of naturally occurring proteins (fig. S28E).

These results suggest that Evo can generate genome sequences containing plausible high-

level genomic organization at an unprecedented scale without extensive prompt engineering 

or fine-tuning. These samples represent a “blurry image” of a genome that contains 

key characteristics but lacks the finer-grained details typical of natural genomes. This is 

consistent with findings involving generative models in other domains, such as natural 

language or image generation. For example, directly sampling from a large natural language 

model typically produces sequences that are grammatically correct yet locally biased toward 

simpler sentence constructions and that are globally incoherent, especially at long lengths. 

Promisingly, in these domains, algorithmic techniques have emerged to improve the quality 

of generations compared with sampling from the pretrained model alone (83–85). The 

baseline generation quality observed without any fine-tuning suggests that Evo is also 

amenable to these techniques.

Discussion

Evo is a genomic foundation model trained on hundreds of billions of DNA tokens across 

the evolutionary diversity of prokaryotic life, capable of prediction and generation tasks at 

the scale of individual molecules, molecular complexes, systems, and even whole genomes. 

Based on a state-of-the art hybrid model architecture, Evo enables single-nucleotide-

resolution language modeling at a context length of 131,072. We conducted the first 

scaling laws analysis of DNA pretraining across several architectures, where we observed 

StripedHyena outperforming several baseline architectures, including Transformers. Evo 

accurately performed zero-shot prediction across diverse fitness or expression prediction 

tasks on proteins, ncRNAs, or regulatory DNA that matches or outperforms specialized 

models while also understanding how mutations to individual genes can affect broader 

organismal fitness. As a multimodal generative model, we use Evo to generate CRISPR-

Cas proteins and their noncoding guide RNAs, multicomponent transposable systems, 

Nguyen et al. Page 14

Science. Author manuscript; available in PMC 2025 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and megabase-long sequences that recapitulate the architecture of real genomes. We 

experimentally validated the functional activity of EvoCas9–1 and Evo-generated IS200 

and IS605 systems. We make open-access code and models for Evo publicly available at 

https://github.com/evo-design/evo.

A model capable of genome-scale design has the potential to advance therapeutic 

discovery, sustainability, and our understanding of fundamental biology but simultaneously 

raises biosafety and ethical considerations. The Global Alliance for Genomics and 

Health (GA4GH) (86) has developed principles for the oversight of genetic engineering 

technologies and could provide a robust foundation for transparency, accountability, and 

shared responsibility. Such a framework is essential to foster international cooperation 

that benefits all humanity. A proactive discussion involving the scientific community, 

security experts, and policy-makers is imperative to prevent misuse and to promote effective 

strategies for mitigating existing and emerging threats. We open-source the model to 

promote transparency and begin a dialogue with the broader scientific community, and we 

apply the precaution of excluding eukaryotic viruses from our pretraining dataset. We further 

include an extended supplementary discussion on safety and ethical considerations (see 

supplementary materials). Clear, comprehensive guidelines that delineate ethical practices 

for the field are required for the responsible development and use of genome-scale language 

models.

Despite the notable capabilities of this first-generation DNA foundation model, a number 

of technical limitations and challenges remain. We pretrained Evo on a dataset of 300 

billion prokaryotic tokens, which represents a miniscule portion of petabytes of publicly 

available genomic data. Because our model is trained only on prokaryotic data, our ability to 

predict functional effects of mutations on human protein fitness is limited. Natural language 

models often struggle to maintain coherent and diverse generation over long sequences, and 

Evo can demonstrate similar properties. For example, we observed that many CRISPR-Cas 

generations had clearly problematic sequences, such as missing or truncated cas genes. At 

the genome-scale, Evo generates megabase-long sequences that demonstrate a high-level 

understanding of genome organization, but it struggles to include key marker genes, such 

as full sets of rRNAs. Improvement on long-range prediction or generation tasks will 

require both methodological improvements and biologically motivated problem selection 

and evaluation. These limitations mirror the constraints of natural language models, which 

have been improved over time with increased scale, labeled data, prompt engineering, and 

alignment with human preferences (39, 83–85, 87). We expect a similar trajectory for 

models of DNA.

We expect that Evo will benefit from additional scale, longer context length, and more 

diverse pretraining data. Given the success of language model–guided directed evolution 

of proteins (88, 89), genomic language models may also help guide the directed evolution 

of multigene systems. The coevolutionary information contained in these models could 

improve molecular structure prediction in a multigene context (5, 47). With better 

conditioning or prompt engineering, Evo could form the basis of a next-generation sequence 

search algorithm by enabling metagenomic mining at a relational or a semantic level rather 

than extracting literal sequences from existing organisms. The incorporation of eukaryotic 
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genomes into Evo will need to consider the far higher complexity of these genomes and 

require substantial resource investment in engineering, compute, and safety-related model 

alignment. Combined with advances in large-scale genome modification (90), Evo expands 

the scope of biological engineering and design to the scale of whole genomes.

Materials and methods

StripedHyena architecture

Evo is based on StripedHyena (34), a state-of-the-art hybrid model architecture for sequence 

modeling. Evo comprises 32 blocks at a model width of 4096 dimensions. Each block 

contains a sequence mixing layer, tasked with processing information along the sequence 

dimension, and a channel mixing layer, focused on processing information along the model 

width dimension. In the sequence mixing layers, Evo uses 29 hyena layers, interleaved 

with 3 rotary (29) self-attention layers at equal intervals. We parametrize convolutions in 

hyena operators using the modal canonical form described in reference (28). For the channel 

mixing layers, Evo uses gated linear units (91, 92). Evo further normalizes the inputs to each 

layer using root mean square layer normalization (93).

Hyena layers

Hyena (34) is a sequence mixer implementing an input-dependent (data-controlled) operator 

via a composition of short convolutions, long convolutions and data-controlled gating 

(Fig. 1B). Hyena belongs to the class of deep signal processing primitives (28, 34, 94), 

designed for efficient, input-dependent computation in large-scale sequence models. Input 

dependence allows an architecture built with deep signal processing layers to adapt such 

computation based on the input, unlocking in-context learning (95, 96). Hyena relies on 

structured operators compatible with fast multiplication algorithms, which can be evaluated 

in subquadratic time, e.g., via Fast Fourier Transforms or parallel scans. The operators are 

parametrized implicitly, i.e., by learning a map from positional embeddings, or the input, to 

the parameters of the operator itself. Typical choices of implicit parametrizations are linear 

projections, hypernetworks (34, 97) or linear state-space models in modal or companion 

form (27, 28, 98–100).

Self-attention layers

Self-attention is the core sequence mixing operator of Transformer models. Self-attention 

constructs the output sequence as a weighted combination of the input elements, where the 

weights themselves are input-dependent. Given an input sequence, the forward pass of a 

self-attention layer is

(Q, K, V) A(Q, K)V

A(Q, K) = softmax QKT

where queries Q ∈ ℝL × D, keys K ∈ ℝL × D, and values V ∈ ℝL × D are obtained through 

a linear transformation of an input matrix U ∈ ℝL × D, e.g., V = UWv, and L denotes the 

sequence length and D denotes the hidden dimension. The softmax is applied to rows of A. 
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The query, key, value terminology is borrowed from databases, where keys are used to index 

stored values. Conceptually, the values of the attention matrix A(Q, K) measure the similarity 

between queries and keys akin to matching queries to keys in a database.

Positional embeddings

By itself, the self-attention operator does not have any notion of the different positions of the 

input embeddings in an input sequence. For this reason, it is generally supplemented with a 

positional encoding mechanism. The attention layers of StripedHyena use a rotary position 

embedding mechanism (RoPE) to model relative positional information (29). Position 

information is encoded by rotating the query and key token vectors of the attention operator. 

Specifically, RoPE implements a rotation to queries and keys, with the rotation magnitude 

defined as a function of their relative position in the sequence.

To extend the context window length from 8k to 131k during our second pretraining stage, 

we apply linear position interpolation to extend the rotary position embedding applied in the 

first pretraining stage at 8k sequence length [for details, see (19)]. Interpolating enables the 

model to continue leveraging its learned representations when applied to longer sequences 

than it was originally trained on. We also tested other position interpolation methods but 

found that they performed slightly worse than linear interpolation on our data.

Tokenization

In language modeling, tokens describe the smallest unit of semantic information that is 

used by a model to process language. For example, tokens can indicate individual words 

of a vocabulary or even lower-level semantic information such as individual characters. 

Tokenization describes the process of mapping these semantic language units, such as words 

or characters, to specific integer values, each indicating an entry in a lookup table. These 

integer values are mapped by embedding layers to vectors, which are then processed by 

the model in an end-to-end fashion. Evo tokenizes DNA sequences at single-nucleotide 

resolution, using the UTF-8 encoding implemented in Python. During pretraining, Evo 

uses an effective vocabulary of four tokens, one per base, from a total vocabulary of 512 

characters, which allows for vocabulary expansion during subsequent downstream tasks. We 

use the additional characters to enable prompting with special tokens during generation with 

fine-tuned models.

OpenGenome datasets

The OpenGenome pretraining dataset (table S2) was compiled from three different sources: 

(i) bacterial and archaeal genomes from the Genome Taxonomy Database (GTDB) v214.1 

(77), (ii) curated prokaryotic viruses from the IMG/VR v4 database (36), and (iii) plasmid 

sequences from the IMG/PR database (37). For GTDB, representative genomes for each 

species were retained to reduce data redundancy.

For IMG/PR, only one representative per plasmid taxonomic unit (PTU) was kept. 

For IMG/VR, sequences were retained only if they were labeled as “high-confidence” 

according to the database metadata, and only one representative per viral operational 

taxonomic unit (vOTU) was kept. These sequences were further curated to remove potential 
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eukaryotic viruses by keeping only sequences whose assigned taxonomic classification 

was found within a prokaryotic host at least twice. Next, the remaining taxonomic 

classifications were inspected and further filtered to exclude all viruses assigned to 

any of 19 families (Adenoviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, 

Hantaviridae, Hepadnaviridae, Herpesviridae, Orthomyxoviridae, Papillomaviridae, 

Paramyxoviridae, Picornaviridae, Poxviridae, Reoviridae, Retroviridae, Rhabdoviridae, 

Circoviridae, Geminiviridae, Picobirnaviridae) or 12 orders (Amarillovirales, Durnavirales, 

Geplafuvirales, Herpesvirales, Lefavirales, Ortervirales, Orthopolintovirales, Piccovirales, 

Picornavirales, Priklausovirales, Cirlivirales, and Mulpavirales). Next, viruses with poor 

taxonomic specificity were excluded, including those with no assigned realm at all, and 

those only assigned up to the level of r:Riboviria, r:Monodnaviria, k:Heunggongvirae, 

k:Bamfordvirae, p:Preplasmiviricota, p:Cressdnaviricota, p:Pisuviricota, or c:Tectiliviricetes.

The CRISPR-Cas and IS200/IS605 fine-tuning datasets were compiled from a previously 

described custom database gathered from multiple sources (101). Briefly, this custom 

database includes genomic and metagenomic sequence data from NCBI RefSeq (102), 

UHGG (103), JGI IMG (104), the Gut Phage Database (105), the Human Gastrointestinal 

Bacteria Genome Collection (106), MGnify (107), Youngblut et al. animal gut metagenomes 

(108), MGRAST (109), and Tara Oceans samples (110).

To compile the CRISPR-Cas genomic loci, this custom database was searched using profile 

HMM models and the HMMER software package to identify Cas9, Cas12, and Cas13 

sequences (111). Several pHMMs were collected from the CRISPRCasTyper annotation 

tool (112), and a recent computational survey of TnpB and Cas12 (113). Custom Cas13 

pHMMs that were previously generated by our group were also used (101). These models 

were searched against our large custom database using hmmsearch and the parameter “-Z 

1000000.” All hits that met E<1× 10−6 with at least one pHMM were kept. Only hits that 

were at least 300 amino acids long and covered over 80% of the pHMM were kept. For all 

hits to a given pHMM, only proteins that were within the middle 99% of the size distribution 

were kept. Corresponding genetic loci were extracted from the database, including 8192 

nucleotides of flanking sequence on both the 5′ and 3′ ends of the Cas effector CDS. 

The tool minced was used to identify CRISPR arrays in the flanking sequences using the 

parameters “-minRL 18 -maxRL 50 -minSL 18 -maxRL 50.” Only loci with both a predicted 

Cas effector and a CRISPR array were retained. The final CRISPR-Cas loci were extracted 

by first identifying the subsequence that covered both the Cas effector and the CRISPR 

array, and then including additional flanking nucleotides on both sides up until 8192 were 

retained for fine-tuning purposes. Only 1 locus per 90% identity Cas cluster was retained, 

clustered using the MMseqs2 command “easy-cluster --cluster-reassign –cluster-mode 0 

--cov-mode 0 -c 0.7 --min-seq-id 0.9” (114).

To compile the IS200/IS605 loci, this custom database was searched using a Pfam Y1 HUH 

Transposase pHMM model (Pfam ID: PF01797). This pHMM identifies IS200/IS605 TnpA 

proteins. All matches meeting E value < 1 × 10−6 that covered at least 80% of the pHMM 

and were less than 400 amino acids were kept. 8196 nucleotides of CDS-flanking sequence 

was then extracted for each hit. Loci that also contained TnpB coding sequences were 

identified using previously compiled pHMMs (113), and a custom pHMM compiled using 
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jackhmmer and the ISDra2 TnpB as an initial query against the MGnify protein database, 

followed by a MAFFT alignment of hits and pHMM construction with HMMER (107, 111, 

115). Hits that were between 250 and 650 amino acids in length were retained, and only 

loci where the distance between the beginning and end of the TnpA and TnpB sequences 

was less than 2500 nucleotides were retained. For TnpA-only loci, up to 300 nucleotides of 

flanking sequence were added to either side of the CDS. For TnpA+TnpB loci, up to 300 

nucleotides were added to the TnpA side of the IS200/IS605 element, while 600 nucleotides 

were added to the TnpB side (to account for the presence of an ωRNA). Only 1 locus per 

90% identity TnpA cluster was retained.

Training procedure

We pretrain Evo in two stages, first with a context size of 8k tokens, followed by a 

second stage where we increase the context size to 131k tokens. Multistage sequence length 

pretraining has been shown to reduce the overall number of compute hours required to 

train long context models (116). The pretraining was distributed across GPUs using pipeline 

parallel with 2 stages (pipeline parallel value of 2), where each stage processes a part of 

the training pipeline (depthwise). This reduces the memory footprint while allowing us to 

maximize throughput during training. In total, we trained Evo in stage 1 on 64 NVIDIA 

H100 GPUs for 2 weeks and on 128 NVIDIA A100 GPUs in stage 2 for an additional 

2 weeks. In total, Evo was trained on ~340B tokens, using ~2 × 1022 FLOPs. Because 

OpenGenome contains 300B tokens, this equates to 1.13 epochs, where data-loading beyond 

300B tokens would consist of repeated tokens that are uniformly randomly sampled in a 

different order than in the first epoch. For specific generation tasks, we further fine-tuned 

Evo, as described in the following sections. We also report long context perplexity scaling of 

Evo 131k in fig. S2. Additional details on training settings are provided in table S1.

Dataloading

We use sequence packing to generate training samples. A sequence of the specified context 

length is sampled at random from the entire training dataset, where the sampling is done 

without replacement over an entire training epoch. Because some DNA sequences are 

shorter than the context length, multiple DNA sequences can be appended until the context 

length (8k or 131k) is reached; likewise, because some DNA sequences are longer than the 

context length, a training sample could consist of a genomic subsequence. Individual DNA 

sequences at the level of assembled contigs are separated by end-of-sequence (EOS) tokens. 

Depending on the dataset or task, we additionally prepend special token(s) to condition the 

model, for example, to steer its generations through prompting.

Hyperparameter tuning and direct model comparisons

Before training Evo, we carried out hyperparameter tuning on partially trained 7B 

Transformer++ models and compared to similarly sized Hyena and StripedHyena models. 

We swept batch size, learning rate and other architectural details. Even when controlling for 

training iterations instead of compute (FLOPs), Transformer++ performance is substantially 

worse than StripedHyena (fig. S4). Out of all the baselines, we find that StripedHyena 

achieves the overall lowest perplexity at the 7B scale, consistent with the scaling rates 

presented in Fig. 1G.
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Scaling laws

We compare different classes of architectures via a compute-optimal protocol, aimed at 

evaluating results on the compute-optimal frontier. Compute-optimal analysis studies the 

best performance of a pretraining run given a compute budget, typically indicated in floating 

point operations (FLOPs), and achieved by optimally allocating portions of the compute 

budget to model size and dataset size. Architecture types differ in compute efficiency, as 

well as how they allocate this compute budget.

We started by tuning hyperparameters such as learning rate and batch size for Transformer+

+ with a grid search, then used the same values for all architectures except in settings 

where numerical instability was observed. To address instability, we lowered the learning 

rate gradually and repeated the experiment until convergence. In all experiments, we 

trained models with 8192 tokens in context length. For each compute budget defined by 

a total FLOP count, we varied the model sizes (6 million to 1 billion parameters) and the 

number of tokens trained. To measure model performance, we use the perplexity metric, 

which indicates how well an autoregressive model performs at predicting the next token 

of a sequence and is highly correlated with performance on downstream tasks. A lower 

perplexity value indicates better performance.

Scaling laws procedure

We provide a summary of the steps involved in our scaling laws analysis. Quantifying 

scaling rates allows us to predict performance as model size, dataset size, and compute grow.

1. Define a set of compute budgets to study. We use 8 × 1018, 2 × 1019, 4 × 1019, 

and 8 × 1019 FLOPs.

2. Calculate the FLOPs (floating point operations) required to process a fixed input 

size for the model architecture of interest (i.e., the “cost” of using the model).

3. Identify the model’s compute-optimal allocation for each compute budget: (a) 

Select a wide range of possible model sizes and calculate for each model size the 

corresponding number of tokens that need to be processed to reach the compute 

budget. Other hyperparameters are chosen according to table S3. We generally 

observe minor changes to model topology (depth, width) to only minimally 

affect perplexity, aligning our results with the findings presented by (39) for 

Transformers. (b) Train a model of each size and record its performance (e.g., in 

terms of perplexity). (c) Identify the optimal compute allocation: Following prior 

analysis, we fit a second-order polynomial as a function from (log) model size 

to perplexity, and extract obtained the compute-optimal point as its minimum. 

The compute-optimal point identifies the optimal allocation of model size and 

training tokens at the given compute budget.

After deriving the compute-optimal scaling rates (Fig. 1G), we compare architectures 

and compute optimal allocation of tokens and model size (fig. S5). In fig. S3, we also 

show rates for compute-suboptimal model sizes by architecture. We quantify the effect on 

perplexity scaling caused by a suboptimal allocation of compute budget to model or dataset 

size (e.g., training a smaller model for more tokens). We estimate the compute-optimal 
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model size for each compute budget, then reduce it by a percentage (the offset). The 

corresponding perplexity is obtained via the IsoFLOP curves (Fig. 1F). Transformer++ 

perplexity scaling rapidly degrades outside the compute-optimal frontier, in contrast to 

Hyena and StripedHyena. Architecture details of models trained for our scaling law analysis 

provided in table S3.

Transformer++

We use a modern decoder-only Transformer architecture with rotary position embeddings 

(29), pre-norm with root mean square layer normalization, and SwiGLU as channel mixer. 

The inner width of the SwiGLU is 4/3 the model width. We experimented with grouped-

query attention (GQA) (117) and found minimal differences in final loss, suggesting the 

technique may be suited to DNA sequence modeling, to further reduce memory footprint 

during inference. All scaling results with Transformer++ do not use GQA.

Hyena

The Hyena baseline is designed with the same architecture improvements applied to the 

Transformer++ model. We replace all multi-headed self-attention layers with hyena layers 

and use a modal canonical parametrization for the long convolution, with state dimension 8.

Mamba

We use the implementation of Mamba as provided by the public repository (https://

github.com/state-spaces/mamba).

Generating DNA sequences with Evo

We sample sequences from Evo using standard top-k and temperature-based methods for 

autoregressive models. Evo benefits from the fast recurrent mode of hyena layers, enabling 

lower latency and memory cost (24, 28). In particular, we use the recurrent form of the 

modal canonical form as shown in (28), first processing the prompt with a Fast Fourier 

Transform modified to return output and state. We use a cache for the states of short 

convolutions. Evo can generate sequences of up to 650k nucleotides on a single 80GB GPU, 

in contrast to other long context methods for dense Transformers requiring a larger number 

of nodes. We use standard kv-caching for rotary attention layers in StripedHyena.

Controllable generation

We follow standard language model prompting techniques that condition generation on a 

given prefix. For class-conditional generation we prompt with a single token, representing 

the desired class, or genomic sequence type (e.g., CRISPR-Cas system, IS200/605). The 

model can also be steered by prompting on desired DNA subsequences.

Protein function prediction

We used DMS datasets to benchmark protein and nucleotide language models in their 

ability to predict mutational effects on protein function. In all cases, we used the nucleotide 

sequences reported by the original study authors. We limited our analysis to prokaryotic and 
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human proteins, where notably the Evo training dataset only contains prokaryotic protein 

sequences.

To compile the nucleotide information from prokaryotic DMS studies, we used all the 

datasets listed as “prokaryote” in the ProteinGym benchmark for which we could also find 

nucleotide-level information reported by the original study authors. This resulted in nine 

studies: a β-lactamase DMS by Firnberg et al. (118), a β-lactamase DMS by Jacquier et al. 
(119), a CcdB DMS (120), a multiprotein thermostability dataset (121), an IF-1 DMS (122), 

an Rnc DMS (123), an HaeIII DMS (124), a VIM-2 DMS (125), and an APH(3′)II DMS 

(126).

To compile the nucleotide information from human DMS studies, we narrowed the scope of 

the set of datasets used in our human benchmark to the human datasets used in reference 

(45) to benchmark mutational effect predictors. We also limited our analysis to studies 

where we could also find nucleotide-level information reported by the original study authors. 

This resulted in six studies:a CBS DMS (127), a GDI1 DMS (128), a PDE3A DMS (129), a 

P53 DMS by Kotler et al. (130), a P53 DMS by Giacomelli et al. (131), and a BRCA1 DMS 

(132).

We compared Evo (pretrained with 8k context) to two genomic DNA language models: 

GenSLM 2.5B, which was trained with a codon vocabulary on sets of genes from 

prokaryotic organisms (15) and Nucleotide Transformer 2B5_multi_species, which was 

trained with a 6-mer nucleotide vocabulary on genome sequences from prokaryotic and 

eukaryotic species (16). We also compared Evo to several protein language models trained 

on nonredundant, generic corpora of protein sequences: CARP 640M (46), ESM-1v (41), 

ESM-2 650M, ESM-2 3B (47), ProGen2 large, and ProGen 2 xlarge (48). For studies that 

provide models with multiple parameter sizes, we selected the largest size on which we 

could perform inference with an 80 GB NVIDIA H100 GPU on sequences from all our 

benchmarked studies without exceeding GPU memory. We also included ESM-2 650M 

and ProGen2 large given that these models have sometimes shown better performance at 

function prediction than larger versions of these models (44).

To compare nucleotide and protein language models, we used all unique nucleotide 

sequences and their corresponding fitness values as reported by the original studies. 

Occasionally, we observed that the fitness values reported for nucleotide sequences differed 

from fitness values reported for protein sequences; in such cases, we used the fitness 

values reported for nucleotide sequences and evaluated the protein language models using 

the translated sequence. In cases where there are multiple nucleotide sequences for a 

single protein sequence due to different codon usage, the nucleotide language models 

were evaluated on each unique nucleotide sequence and the protein language models were 

evaluated on the coding sequence corresponding to each unique nucleotide sequence; this 

means that a protein language model could have been evaluated on the same protein 

sequence multiple times for a given study. Some studies report fitness values for mutations 

that involve stop codons; in such cases, we evaluated the nucleotide language model on the 

sequence containing the stop codon and excluded these examples from the protein language 

model benchmark.
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We computed the Spearman correlation between the experimental fitness values and the 

sequence likelihood (for autoregressive language models) or the sequence pseudolikelihood 

(for masked language models). When using Evo sequence likelihoods to score sequences, 

we also prepend the EOS token (used in the pretraining data to delimit different sequences) 

to the full sequence, which we find empirically to boost zero-shot performance. We assessed 

statistical significance of the Spearman correlation coefficient under a null hypothesis that 

the correlation coefficient is drawn from a t-distribution with N − 2 degrees of freedom, 

where N is the number of samples over which we compute the correlation. We used this 

null distribution to compute a P value based on the observed correlation. We used the scipy 

Python library (https://scipy.org/) to compute these values.

ncRNA function prediction

We used DMS datasets to benchmark protein and nucleotide language models based on their 

ability to predict mutational effects on ncRNA function. Given that no well-established 

benchmark datasets exist for ncRNA function prediction, we curated the literature for 

examples of ncRNA mutational scanning experiments. We obtained the following datasets: 

a ribozyme DMS by Kobori et al. (133), a ribozyme DMS by Andreasson et al. (134), a 

tRNA DMS by Domingo et al. (135), a tRNA DMS by Guy et al. (136), a ribozyme DMS by 

Hayden et al. (137), a ribozyme DMS by Pitt et al. (138), and a rRNA mutagenesis study by 

Zhang et al. (51).

We compared Evo (pretrained with 8k context) to the nucleotide language models described 

above as well as RNA-FM, which was trained on a single-nucleotide vocabulary on short 

ncRNA sequences (50). Like the methods applied to protein coding sequences above, we 

compiled experimental fitness values for each ncRNA variant. We computed the Spearman 

correlation between the experimental fitness values and the sequence likelihood (for 

autoregressive language models) or the sequence pseudolikelihood (for masked language 

models). When scoring sequences with Evo sequence likelihood, we also prepend the EOS 

token to each sequence. Correlation coefficients and associated P values were computed as 

described above.

Gene expression prediction from regulatory DNA

From LaFleur et al. (52), we obtained a dataset of 5193 promoter sequences that we 

randomly split into 4673 promoters in the training dataset and 520 in the validation dataset 

following the train-validation split sizes used in the original study. We also obtained another 

5391 promoter sequences from the same study, which we used as a second validation 

dataset. We also obtained 4350 promoter sequences from Hossain et al. (54), 10,898 

promoter sequences from Urtecho et al. (53), and 1493 promoter sequences from Yu et 
al. (55), which we used as held-out test sets. The datasets were further processed to remove 

the background DNA sequence by identifying the subsequence with the maximum predicted 

transcription initiation rate using the method of LaFleur et al. (52). We also obtained a 

dataset of 12,243 promoter-RBS sequences from Kosuri et al. (56), which we used as 

an additional test set. All promoter sequences had associated activity labels related to 

gene expression and the data from Kosuri et al. (56) quantifies both mRNA and protein 

expression. The supervised tasks described below were all trained only on data generated by 
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LaFleur et al. (52) and then evaluated based on their ability to make predictions on data from 

other studies.

For the promoter activity prediction tasks, we computed the predictive performance of 

promoter GC content and the zero-shot sequence likelihoods from Evo and from GenSLM 

on the four test datasets. When scoring sequences with Evo sequence likelihood, we 

prepended the EOS token to each sequence. We evaluated the performance of Promoter 

Calculator (52) on the four test datasets, using the minimum predicted dG_total across the 

forward sequence as the prediction score.

We additionally trained supervised models on the training set of 4673 promoters and 

associated activity values, using the two validation datasets described above to guide model 

development. These supervised models used either one-hot-encoded sequence embeddings 

or neural embeddings from Evo. The neural embeddings leveraged the output of the last 

hidden hyena layer, which takes the form of a matrix with a dimension of the sequence 

length × the hidden dimension (4096). On these embeddings, we trained either a ridge 

regression model or a convolutional neural network (CNN). To implement ridge regression, 

we used the RidgeCV module from scikit-learn with default values, which identifies the 

α hyperparameter used to weight the ℓ2-regularization term. As input features for ridge 

regression, we additionally averaged the Evo embedding over the sequence dimension to 

produce an embedding vector of length 4096 for each sequence

The CNN consists of two convolutional layers, each followed by a ReLU activation 

function. The first convolutional layer starts with an input embedding (where the sequence 

dimension was suffix-padded with zeros up to length 256) with 4096 channels, using a 

kernel size of 8 and a stride of 1, with “same” padding to preserve the input sequence length. 

The second convolutional layer takes the output from the first layer and applies similar 

operations. Following the convolutional layers, a max pooling layer with a kernel size of 

7 and a stride of 1 is applied, with padding adjusted to maintain the sequence length. The 

pooled output is then flattened into a two-dimensional tensor, which is passed through a 

fully connected layer that reduces the data to 128 channels. A final fully connected layer 

further reduces the data to a single output. The forward pass through the network involves 

applying the ReLU activation after each convolutional and fully connected layer (except for 

the final output layer). The model was trained for 10 epochs with the Adam optimizer, a 

learning rate of 0.0001, β1 = 0.9, and β2 = 0.999.

For the protein expression prediction task, we used the data linking RBS sequences 

to protein expression from Kosuri et al. (56). We evaluated the zero-shot predictive 

performance of the sequence likelihoods from Evo when only providing the model with 

the sequence of the promoter, the sequence of the RBS, or the sequence of the promoter-

RBS pair. When scoring sequences with Evo sequence likelihood, we also prepend the 

EOS token to each sequence. We also evaluated the predictive performance of the GC 

content of the promoter-RBS concatenated sequence and the zero-shot likelihoods from 

GenSLM. We also evaluated the performance of RBS Calculator (57, 58) by providing the 

online webtool (https://salislab.net/software/predict_rbs_calculator) with a simulated mRNA 

sequence created by concatenating the RBS sequence and the sequence of sfGFP used 
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by Kosuri et al. (56). To ensure that the Spearman correlation is comparable across these 

settings, we computed the correlation over all 12,243 examples (which involves duplicating 

sequences in the promoter-alone or RBS-alone settings).

CRISPR-Cas fine-tuning and generation

To generate CRISPR-Cas systems, we fine-tuned Evo by continuing to train the 8k-context 

pretrained model on a dataset of CRISPR-Cas sequences, which was curated as described 

above. We retained most of the hyperparameters used during pretraining but set the batch 

size to 524,288 tokens and an initial learning rate of 0.00009698, which was the learning 

rate at the final step of pretraining. During fine-tuning, we prepended a single class token 

corresponding to the type of Cas protein (Cas9, Cas12, or Cas13), which was identified as 

described in the OpenGenome datasets section; this class token was then followed by the 

nucleotide sequence. We also modified the dataloader such that each sample provided to the 

model during training would begin with the first token of the CRISPR-Cas sequence and, 

if a sequence was shorter than the context length, we padded the sequence to the remaining 

context (where padding did not contribute to the loss computation). This ensured that each 

training sample would correspond to a single CRISPR-Cas sequence. We fine-tuned the 

model for ~10 epochs.

We prompted the model with a given class token and one additional character for each 

sequence generation. For example, to prompt for Cas9 sequences, we used either “``” or 

“`A” as the Cas9 prompt, since we found that, in some instances, adding an additional 

random nucleotide character would improve the quality of generations. We performed 

standard temperature-based and top-k autoregressive sampling (139). In our generations, 

we performed an exhaustive sweep consisting of temperatures of 0.1, 0.3, 0.5 and top-k
values of 2 and 4. All sampled sequences were then combined and used for downstream 

extraction and analysis of candidate CRISPR systems.

CRISPR-Cas sampling evaluation

The in silico Cas evaluation pipeline consisted of an initial open reading frame (ORF) search 

using Prodigal (140) and subsequent profiling of the extracted ORFs using hidden markov 

model (HMM) profiles for each Cas subtype. Sampled sequences with a positive pHMM hit 

with an E value under 1 × 10−3 and a sequence length above a given threshold were further 

analyzed using the MinCED package to identify possible CRISPR arrays (141). Generations 

with Cas ORFs and CRISPR arrays were aligned against Cas ORF sequences in the training 

data with MMSeqs2 to identify the closest sequences in the training data in sequence 

identity (114). We then performed MAFFT alignments with nearest hits to recompute 

alignments. MAFFT alignments were trimmed to 80% of the full alignment length centered 

at the middle of the alignment and end-gaps were removed before determining an estimate 

for percent identity to the closest item in the training data (115). To assess generation 

quality, we computed a “degeneracy score” as the percent coverage of a sequence by 

any repetitive substring longer than a cutoff value. For example, the degeneracy score of 

“ATAGAAAA-AATAGGGGGAGA” with a cutoff of 4 would be 0.55.
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To select candidates for experimental validation, Cas9 generations with an ORF sequence 

identity higher than 90% to a training sequence were first filtered out. Remaining 

generations were then scored based on the distribution of mismatches in the pairwise 

alignments between the candidate sequence and its closest hit in the training dataset. 

Sequences with alignments containing an even distribution of mismatches across the ORF 

sequence were scored highly and those with an uneven distribution (e.g., concentration of 

mismatches or gaps at the N and C termini) were down-weighted. The Cas9 ORFs from 

the top-ranking 2000 generations were folded with AlphaFold2 (5). From the predicted 

structures, generations were filtered based on pLDDT, radius of gyration, the presence of a 

detected tracrRNA sequence, and the presence of RuvC and HNH domains in the Cas9 ORF. 

The Biotite package was used to calculate radius of gyration (142). CRISPRtracrRNA was 

used to extract potential tracrRNA sequences from candidate generations and cofolded with 

the extracted crRNA sequence using RNAmultifold (143, 144). The final 11 Evo-generated 

Cas9 candidates were selected from this subset through manual inspection of predicted Cas9 

structure and predicted sgRNA secondary structure.

CRISPR-Cas in vitro cleavage

For an initial screen of 11 selected Cas9 candidates, we expressed the protein and sgRNA 

in vitro using the PURExpress (IVTT) kit (NEB E6800S) and the HiScribe T7 High 

Yield RNA Synthesis (IVT) kit (NEB E2050S), respectively, following the manufacturer’s 

recommendations. The sgRNA IVT product was column-purified using the 500 µg Monarch 

RNA Cleanup kit (NEB T2050L) before use; the in vitro expressed protein was not purified 

before use. The IVT and IVTT products were performed in 20 µL reactions with 2 µL 

of expressed protein, 2 µL of gRNA, 2 µL of DNA target at a final concentration of 1 

nM, and 2 µL of NEBuffer r3.1 (NEB B6003S) at a final concentration of 1X. Cleavage 

reactions were incubated at 37°C for 20 hours and quenched with a final concentration of 

50 mM EDTA (Invitrogen no. 15575020) followed by 2 µL of RNase A treatment (NEB 

T3018L) for 30 min at 37°C and 2 µL of Proteinase K treatment (NEB P8107S) for 15 min 

at 65°C. Cleavage products were then column-purified using a QIAquick PCR Purification 

kit (Qiagen no. 28104) and stored at 4°C before performing gel electrophoresis on Novex 

4 to 12% TBE gels (Invitrogen EC62352BOX) at a constant voltage of 200 V. Gels were 

stained with SYBR Gold Nucleic Acid Gel Stain for 5 min at a 1X concentration (Invitrogen 

S11494).

SpCas9 and EvoCas9–1 was recombinantly expressed in the E. coli strain OverExpress 

C43(DE3) (Sigma Aldrich CMC0019) and purified via His-tag and size-exclusion 

chromatography using the procedure described in the section “CRISPR-Cas recombinant 

expression and purification.” 2 µL of commercially available SpCas9 (NEB M0386T), 

purified SpCas9, or purified EvoCas9–1 were incubated with 2 µL of either a targeting 

or nontargeting gRNA and 2 µL of a DNA target at a 10:10:1 molar ratio of 

Cas9:sgRNA:target. A final concentration of 1 nM was used for the target and final 

concentrations of 10 nM for both the Cas9 protein and sgRNA. Cleavage reactions were 

performed in 20 µL volumes with 2 µL of NEBuffer r3.1 (NEB B6003S) used at a 

final concentration of 1X. Reactions were incubated at 37°C for up to 12 hours with 

timepoints collected at 5 min, 15 min, 1 hour, 3 hours, and 12 hours. Separate and 
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independent reactions were used for each timepoint and condition and quenched with a 

final concentration of 50 mM EDTA (Invitrogen no. 15575020) before treating with 2 

µL of RNase A (NEB T3018L) at 37°C for 10 min and 2 µL of Proteinase K (NEB 

P8107S) at 65°C for 15 min. Cleavage products were column-purified using a QIAquick 

PCR Purification kit (Qiagen no. 28104) before performing gel electrophoresis on a Novex 

4 to 12% TBE gel (Invitrogen EC62352BOX) at a constant voltage of 200 V. Gels were 

stained with SYBR Gold Nucleic Acid Gel Stain for 5 min at a 1X concentration (Invitrogen 

S11494).

CRISPR-Cas recombinant expression and purification

The sequence encoding the protein of interest was subcloned into a protein expression 

vector containing an N-terminal 8xHis tag followed by a TEV protease cleavage site 

using Gibson assembly. The protein was expressed in E. coli strain OverExpressC43(DE3) 

(MilliporeSigma) grown in Terrific Broth at 18°C for 16 hours after induction with 0.4 mM 

IPTG. The protein was purified by sequential affinity and size exclusion chromatography 

steps. Cells were centrifuged at 4000 ×g, 4°C for 15 min and resuspended in lysis buffer 

(50mM Tris–HCl pH 7.5, 0.5 M NaCl, 2 mM MgCl2, 10 mM imidazole, 10% glycerol) 

supplemented with EDTA-free protease inhibitor tablets (Roche) and 1 mg/mL lysozyme 

(ThermoFisher). Cell suspensions were then disrupted using a sonicator (Fisher Scientific). 

Crude lysate was subsequently ultracentrifuged at 40,000 ×g, 4°C for 45 min using a 70Ti 

rotor in a XE-90 ultra-centrifuge (Beckman Coulter). Clarified lysate was then filtered 

through a 0.22 µm filter and loaded onto a 5 µL HisTrapFF column (Cytiva) using a 

peristaltic pump.

After the entire volume of the clarified lysate was flowed through the HisTrapFF affinity 

column, the column was washed extensively with Wash Buffer (50 mM Tris–HCl pH 7.5, 

0.5 M NaCl, 30 mM imidazole, and 10% glycerol). The HisTrapFF column was then 

connected to an AktaPure system (Cytiva) and eluted using a linear gradient of Elution 

Buffer (50mM Tris–HCl pH 7.5, 0.5 M NaCl, 0.5 M imidazole, and 10% glycerol) in 1.5 

µL fractions. Fractions corresponding to the peak identified to contain the protein of interest 

were pooled and concentrated using an Amicon 30 kDa MWCO filter (MilliporeSigma) 

before overnight cleavage of the 8xHis tag using TEV protease. Following TEV protease 

cleavage, the solution was applied to a second HisTrapFF column to remove the cleaved tag 

from the preparation. The column was washed with 15 µL Wash Buffer and the flow through 

was collected for concentration using an Amicon 30 kDa MWCO filter (MilliporeSigma). 

The concentrated protein was then applied to a Superdex200 10/300 column for purification 

by size exclusion chromatography, with an isocratic elution program using SEC Buffer (20 

mM Tris–HCl pH 7.5, 0.5M NaCl, and 1 mM DTT, 10% glycerol). Eluted protein was 

concentrated again using an Amicon 30 kDa MWCO filter (MilliporeSigma), flash frozen in 

liquid nitrogen andstoredat−80°C.

IS200/IS605 fine-tuning and generation

To generate IS200 and IS605 systems, we fine-tuned Evo by continuing to train the 8k-

context pretrained model on a dataset of IS200/IS605 sequences, which was curated as 

described above. We retained most of the hyperparameters used during pretraining but set 
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the batch size to 524,288 tokens and an initial learning rate of 0.00009698, which was the 

learning rate at the final step of pretraining. During pretraining, we prepended a start token 

to each sequence labeling whether the system corresponded to an IS200 or an IS605 system. 

We used the token corresponding to the character “~” as the IS200 prompt and the token 

corresponding to the character “#” as the IS605 prompt. We also modified the data loader 

such that each sample provided to the model during training would begin with the first 

token of the IS200/IS605 sequence and, if a sequence was shorter than the context length, 

we padded the sequence to the remaining context (where padding did not contribute to the 

loss computation), similar to the strategy described for CRISPR-Cas9 systems above. We 

fine-tuned the model for ~10 epochs.

We prompted the model with a special prompting token for each sequence generation. 

We performed standard temperature-based and top-k autoregressive sampling (139). In our 

generations, we performed an exhaustive sweep consisting of temperatures of 0.1, 0.3, 

0.5, 0.7, 0.9, 1.0, and 1.3, and top-k values of 2 and 4. Sampled sequences were further 

processed by splitting on the first whitespace character, keeping the first non-whitespace 

sequence, and only keeping generated sequences that were composed entirely of valid 

nucleotides.

We analyzed generated sequences using Prodigal to identify coding sequences and proteins 

(140), followed by hmmsearch (-Z 1000000) using pHMMs to identify TnpA and TnpB 

sequences (111), and cmsearch (-Z 4) using covariance models developed in a previous 

publication (66) to identify candidate wRNAs (145). Candidate TnpA sequences were kept 

if they had an E value < 1 × 10−3 to the pHMM and if they covered at least 50% of the 

pHMM. Candidate TnpB sequences were kept if they had an E value < 1× 10−3 to at least 

one pHMM, if they covered at least 50% of the pHMM, and if they were between 300 and 

600 amino acids in length.

Predicted TnpA and TnpB protein sequences were aligned back to proteins in the training 

set using MMseqs2 (114). The top three hits for each protein were extracted and separately 

aligned using the MAFFT default algorithm to estimate the amino acid identity across the 

full lengths of the two sequences (115). To account for different start codons and to generate 

a more conservative percentage identity estimate, these alignments were trimmed to the 

middle 80% of each sequence, end gaps were trimmed, and the amino acid percent identity 

was recalculated, which we called a “trimmed percent identity.”

TnpA and TnpB protein sequences were binned by distance from the training set in 9 

equal width bins from 10% to 100% trimmed percent identity. 200 proteins were randomly 

selected from each bin for TnpA proteins that appeared in the absence of a TnpB protein 

(IS200-like), TnpA proteins that appeared with a TnpB protein (IS605-like), and TnpB 

proteins that appeared with a TnpA protein (IS605-like). ESMFold was used to fold 

all 5400 proteins, with TnpA protein sequences folded as dimers with a glycine pseudo-

linker of length 100. The mean backbone atom pLDDT was calculated and reported as 

a measurement of ESMFold prediction confidence. Example TnpA and TnpB proteins 

were aligned to the 2VIC and 8BF8 Protein Data Bank (PDB) structures, respectively, 

using the US-align tool (146), right-end and left-end DNA sequences from PDB structures 
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2VIC and 2VHG were overlayed on the aligned structure, and structures were visualized 

in PyMOL (147). RNAfold from the ViennaRNA package was used to fold the predicted 

ωRNA with default parameters (148, 149). Visualizations of ωRNAs were drawn using R2R 

(150). Visualizations of ISEvo1 TnpA and TnpB were also computed using AlphaFold3 by 

uploading sequences to the AlphaFold Server (64).

Evo was also used to calculate the entropy of the conditional probabilities at each position 

in each sequence with the pertinent special token prepended. For example, the entropy at 

position i was calculated using the likelihoods p xi ∣ x1, …, xi − 1  over the entire vocabulary. 

We then visualized these entropies alongside the annotated sequence positions for several 

canonical IS200/IS605 systems and summarized the average entropy values within 250 bp of 

TnpA and TnpB coding sequences.

IS200/IS605 categorical Jacobian analysis

We computed the “categorical Jacobian” matrix on a sequence of nucleotides based on a 

procedure introduced by Zhang et al. (70) and clarified in the accompanying code at the 

GitHub repository (https://github.com/zzhangzzhang/pLMsinterpretability). To summarize 

this procedure, let x = x1, x2, …, xL , xi ∈ X denote a sequence of length L where in our 

study we define X = “A”, “C”, “G”, “T”  to be a nucleotide vocabulary. Let f:XL ℝL × |X|

denote the function for computing the language-model logits (where a softmax function 

computed over the logits for a given position corresponds to the language-model likelihoods 

for that position) given an input sequence x.

Now we define a sequence x xi = x1, …, xi, …, xL  as the sequence x mutated to xi ∈ X
at position i ∈ [L], where [L] is defined as the set 1, 2, …, L . We also define 

g x, xi, i = f(x) − f x xi  where g:XL × X × [L] ℝL × |X| is a function that computes the 

difference in logits between the original sequence x and the mutated sequence x xi .

The “categorical Jacobian” tensor J is then defined as

g(x, “A”, 1) ⋯ g(x, “T”, 1)
⋮ ⋱ ⋮

g(x, “A”, L) ⋯ g(x, “T”, L)

which requires mutating x to all nucleotides at all positions. Note that J ∈ ℝL × |X| × L × |X|. 

This tensor J is then modified to produce a mean-centered tensor J by computing each entry 

in this tensor as

Ji, j, k, l = Ji, j, k, l − 1
L ∑

i′ = 1

L
Ji′, j, k, l − 1

X ∑
j′ = 1

X
Ji, j′, k, l

− 1
L ∑

k′ = 1

L
Ji, j, k′, l − 1

X ∑
l′ = 1

X
Ji, j, k, l′

and is then symmetrized by computing, for each entry
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Ji, j, k, l = 1
2 Ji, j, k, l + Jk, l, i, j

to produce a final symmetrized tensor J.

We can turn J into a positional “couplings map” matrix C′ ∈ ℝL × L in which each entry 

can be intuitively thought of as representing a “Euclidean” magnitude of the change in the 

logits across all values of the vocabulary |X|, where a larger magnitude change indicates a 

greater information “coupling” between the two corresponding positions; more concretely, 

to calculate each entry in C′, we compute

Ci, j
′ = ∑

n = 1

X
∑

m = 1

X
Ji, n, j, m

2

1
2

We now define the “average product correction” (APC) function a: [L] × [L] ℝ as 

computing, for each entry in a matrix X ∈ ℝL × L

a(i, j; X) = Xi, j − ∑i′ = 1
L xi′, j ∑j′ = 1

L xi, j′

∑i′ = 1
L ∑j′ = 1

L Xi′, j′

− 1 i = j

where 1 ⋅ ∈ 0, 1  is the indicator function. We are now ready to define the final matrix, 

C ∈ ℝL × L, which is obtained by computing, for each entry in C

Ci, j = a i, j; C′

Throughout the text, when we refer to the “categorical Jacobian matrix” or simply the 

“categorical Jacobian,” we are referring to the matrix C.

We computed the categorical Jacobian matrix using Evo fine-tuned on IS200/IS605 

sequences for natural IS605 elements ISHp608, ISDge10, and ISDra2 using the full IS 

sequence flanked with 500 bp of natural context on either side, where each pair of flanking 

sequences is extracted from the best BLAST (151) hit against the nr/nt databases for the IS 

sequence from ISFinder (71).

IS200/IS605 filtering of generations and construct design

To nominate generated IS200/IS605 sequences for synthesis and experimental validation, 

the sequences were further curated as follows. TnpA proteins from generated sequences 

were first searched with blastp (151) against four natural TnpA proteins that were used as 

positive controls, originating from IS200/IS605 elements ISSpn6, ISHp608, ISDge10, and 

ISStin10. Alignments were filtered to keep only those that were between 100 and 200 amino 

acids in length, and to keep only those that had a trimmed percent identity with the nearest 
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training example that was <90%, and those that were at least 50% identical to the nearest 

positive control as estimated by the blastp alignment. Structures of TnpA proteins from the 

remaining 723 ISSpn6like, 697 ISHp608-like, 123 ISDge10-like, and 1686 ISStin10-like 

generated sequences were predicted using ESMFold (47) as monomers and only proteins 

with mean pLDDTs ≥0.7 were retained. Generations were further reduced by selecting for 

generations where the TnpA protein contained at least one HUH and one YXXXQ amino 

acid motif, had a TnpA start codon within ≤500 bp from the start of the generation, and 

where the TnpA protein length was ≤180 amino acids.

For remaining IS200-like generations, we further required that at least 250 bp be on either 

side of the predicted TnpA CDS. The 200 bp sequences flanking the TnpA CDS were 

searched for perfect hairpins (no mismatches or gaps allowed in the stem, and loop length 

≤5 bp), and sequences with max length perfect hairpin stems ≤6 bp in the 200bp left of the 

TnpACDS or ≤8 bp in the 200 bp right of the TnpACDS were filtered out (fig. S20C).

For the 247 ISStin10-like and 102 ISSpn6-like generations passing these filters, we 

computed upstream base pair propensity vectors using ViennaRNA (144) for the 200 

bp on either side of the TnpA CDS (fig. S20D) by taking the row sum of the base 

pair propensity matrix where all pairwise base pair propensities were calculated using 

ViennaRNA.get_pr(i, j) for i ≤ j. The resulting upstream base pair propensity vectors for 

each generation were hierarchically clustered with the upstream base pair propensity vectors 

for ISSpn6 and ISStin10 on Euclidean distance with the UPGMA algorithm. A dendrogram 

threshold was chosen manually by visual examination, and selected clusters were extracted 

using scipy.cluster.hierarchy. fcluster (fig. S20E). This process was repeated with remaining 

IS200-like candidates with best matches to ISStin10 against the IStin10 upstream base pair 

propensity vectors (fig. S20F), as well as with best matches to ISSpn6 against the ISSpn6 

upstream base pair propensity vectors (fig. S20G). For any remaining sequences, the TnpA 

dimer structure was predicted using AlphaFold-Multimer-v2.3.0 via ColabFold (152) using 

two models with three recycles each, and sequences with TnpA dimer structures that did not 

appear to dimerize via pAE scores were discarded.

Remaining candidates were formatted for IDT synthesis as 520 bp sequences containing 

30 bp of filler sequence containing a primer binding site for amplification followed by 

the 200 bp to the left of the TnpA CDS followed by 60 bp of filler sequence containing 

primer binding sites for two primers facing out followed by the 200 bp to the right of 

the TnpA CDS followed by 30 bp of filler sequence containing a primer binding site for 

amplification (data S1). Resulting sequences were uploaded to the IDT web portal and 12 

ISStin10-like and 12 ISSpn6-like candidates were selected from the sequences that had 

green and yellow IDT synthesizability scores. The TnpA corresponding to these sequences 

were codon optimized using the IDT codon optimization tool set to E. coli and flanked 

with the standard T7 promoter, RBS, and T7 terminator sequences for PURExpress (NEB) 

as listed in the manufacturer’s manual. An additional TnpA mutant construct in which 

any YXXXQ motif in the sequence was mutated to AXXXQ was also designed for each 

candidate. The codon-optimized TnpA and TnpA mutant protein coding sequences for 

PURExpress and end-containing sequences were ordered as IDT eBlocks.
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For remaining IS605-like generations, we further required that at least 250 bp be upstream 

of the predicted TnpA CDS and that at least 200 bp be downstream of the predicted TnpB 

CDS. We then filtered for sequences with TnpB protein start codon distances of at most 100 

bp downstream of the TnpA protein stop codon.

For the 407 ISHp608-like and 67 ISDge10-like generations passing these filters, we 

formatted the ends for IDT synthesis as 520 bp sequences containing 30 bp of filler 

sequence containing a primer binding site for amplification followed by the 200 bp to 

the left of the TnpA CDS followed by 60 bp of filler sequence containing primer binding 

sites for two primers facing out followed by the −50:150 bp to the right of the TnpB CDS 

followed by 30 bp of filler sequence containing a primer binding site for amplification (data 

S1).Resulting sequences were uploaded to the IDT web portal and only the 37 ISDge10-like 

and the 20 ISHp608-like sequences that were green by IDT synthesizability scores were 

retained. For these sequences, the TnpA dimer structure was predicted using AlphaFold-

Multimer-v2.3.0 via ColabFold (152) using two models with three recycles each, and 

sequences with TnpA dimer structures that did not appear to dimerize via pAE scores were 

discarded. From the remaining sequences, 12 ISStin10-like and 12 ISSpn6-like candidates 

were selected ensuring that the best sequence identity matches to the fine-tuning set were 

≥50%. For final synthesis and experimental validation, a different 60 bp filler sequence 

was used for the ISHp608-like candidates compared to the ISStin10-like, ISSpn6-like, or 

ISDge10-like sequences to eliminate a primer-binding site containing a TTAC, which is the 

canonical ISHp608 target site. The TnpAs corresponding to these 24 candidate sequences 

were codon optimized using the IDT codon optimization tool set to E. coli and flanked 

with the standard T7 promoter, RBS, and T7 terminator sequences for PURExpress (NEB) 

as listed in the manufacturer’s manual. An additional TnpA mutant construct in which any 

YXXXQ in the sequence was mutated to AXXXQ was also designed for each candidate. 

The codon-optimized TnpA and TnpA mutant PURExpress and end-containing sequences 

were ordered as IDT eBlocks.

Similar eBlocks encoding TnpA using the natural sequence, encoding a TnpA mutant with 

the catalytic tyrosine mutated to alanine, and a 520 bp sequence containing the ends were 

ordered for the natural IS200 transposon ISSpn6 and the natural IS605 transposon ISHp608.

IS200/IS605 TnpA protein preparation

TnpA and TnpA-mutant eBlocks were PCR amplified using NEBNext 2xPCR mastermix 

(New England Biolabs) for 35 cycles using an annealing temperature of 65°C and 

an elongation time of 15 s in 50 µL reactions with primers PURExpress_T7_F and 

PURExpress_T7_F (sequences provided in data S1), column purified using a QIAQuick 

PCR purification kit (Qiagen), and diluted to 30 ng/µL. In vitro transcription-translation 

reactions were performed using PURExpress (New England Biolabs) in 27 µL reactions 

containing 10 µL solution A, 7.5 µL solution B, 1 µL of Murine RNAse Inhibitor (NEB), and 

8.5 ul (255 ng) of template DNA. DHFR expression plasmid provided with the PURExpress 

kit was used as template DNA for reactions lacking TnpA protein. Reactions were incubated 

for 3 hours at 37°C and directly transferred to in vitro reactions.
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IS200/IS605 substrate DNA preparation

Substrate eBlocks were PCR amplified using NEBNext 2xPCR master mix (NEB) for 35 

cycles using an annealing temperature of 65°C and an elongation time of 15 s in 100 µL 

reactions with a forward primer containing 3 PTOs and a reverse primer containing a 5′ 
phosphate (ssDNA_substrate_PTO_F and ssDNA_substrate_5phos_R; sequences provided 

in data S1), column purified using QIAprep Spin Miniprep Columns (Qiagen), and eluted 

in 45 µL water. The Guide-it Long ssDNA Production System v2 (Takara Bio) was used to 

generate substrate ssDNA in 50 µL reactions with 30 µL purified PCR product following the 

manufacturer’s conditions with an incubation time of 10 min at 37°C and 5 min at 80°C with 

Strandase A, and 5 min at 37°C and 5 min at 80°C with Strandase B. The resulting ssDNA 

substrates were then column purified using a NucleoSpin Gel and PCR Clean-Up kit (Takara 

Bio) by diluting the reaction to 100 µL total volume, adding 200 µL buffer NTC (Takara 

Bio), mixing thoroughly before adding to the column, and washing with 600 µL buffer NT3 

before eluting in 30 µL elution buffer. Resulting ssDNA products were diluted to 20 ng/µL 

as quantified using a NanoDrop One in ssDNA mode (ThermoScientific).

Substrate PCR products for use in the in vitro assay as dsDNA were further treated with 

exonuclease I (E. coli, New England Biolabs) to remove residual PCR primers or other 

ssDNA in 20 µL reactions containing 600 ng PCR product, 2 µL 10x exonuclease I buffer, 

and 5 µL of exonuclease I. After column purification using a QIAQuick PCR purification kit 

(Qiagen), the resulting dsDNA substrate was diluted to 20 ng/µL.

IS200/IS605 in vitro TnpA excision/insertion assays

In vitro transposition reactions were performed by incubating 10 µL PURExpress product 

with 10 µL (200 ng) of ssDNA or dsDNA substrate for 2 hours at 37°C. Reactions were 

treated with 1 µL RNase A (20 mg/mL, New England Biolabs) for 5 min at 37°C and 10 

µL Proteinase K (8 units, New England Biolabs) for 15 min at 37°C. Resulting ssDNA 

products were then column purified using a NucleoSpin Gel and PCR Clean-Up kit (Takara 

Bio) by diluting the reaction to 100 µL total volume, adding 200 µL buffer NTC (Takara 

Bio), mixing thoroughly before adding to the column, and washing with 600 µL buffer 

NT3 before eluting in 30 µL elution buffer. PCRs were then performed in 50 µL reactions 

for 35 cycles using an annealing temperature of 65°C and an elongation time of 20 s 

using 4 µL eluate, NEBNext 2x PCR master mix (New England Biolabs) and primers 

FillerOut_F and FillerOut_R for ISStin10-like, ISSpn6-like, and ISDge10-like candidates 

and using primers ISHp608-like_FillerOut_F and FillerOut_R for ISHp608-like candidates 

(sequences are provided in data S1). PCR products were column-purified using a QIAquick 

PCR Purification kit (Qiagen) and run on either a 2% E-Gel EX agarose gel pre-stained 

with SYBR Gold or on a 48-well 2% E-Gel agarose gel pre-stained with SYBR Safe 

(ThermoScientific).

IS200/IS605 nanopore sequencing analysis of PCR products

PCR products from TnpA reactions were submitted for nanopore sequencing via the 

Premium PCR sequencing service from Plasmidsaurus (2 samples per condition), which 

uses the ligation sequencing kit v14 (Oxford Nanopore Technologies) and R10.4.1 flow cells 

(Oxford Nanopore Technologies). Reads were then processed by filtering for the expected 
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read structure (FillerOut_F/ISHp608-like_FillerOut_F followed by sequence followed by 

FillerOut_R reverse complemented or FillerOut_R followed by sequence followed by 

FillerOut_F/ISHp608-like_FillerOut_F reverse complemented), by looking for expected 

primer sequences in the 30 bp on either end, allowing for up to four errors (sequences are 

provided in data S1). Reads passing this filtering were then mapped to the relevant substrate 

sequence by sliding a window across the sequence, splitting each window into a left and 

right half, and matching each half to the substrate sequence, requiring a perfect match for 

both sides. The window was twice the minimum length i required for all substrings of length 

i from the substrate sequence to be unique. Each match was then added to a jump map 

matrix for each condition at the position corresponding to the right-most base of the left side 

match and the left-most base of the right-side match (fig. S22A). Transposon boundaries and 

hairpins were annotated based on these jump maps and additional manual processing and 

inspection of reads and alignments via Geneious Prime 2024 (https://www.geneious.com).

Gene essentiality prediction

We obtained binary genome-wide essentiality results for 56 bacterial genomes from the 

DEG database (73) in which coding genes are labeled with “essential” or “nonessential” 

binary labels. We also obtained genome-wide essentiality results for two phage genomes, 

lambda and P1, from Piya et al. (74) and used the binary labels assigned by the study authors 

based on the results of their CRISPRi screen.

To perform the in silico gene essentiality screen, we obtained the whole bacterial genome 

using the RefSeq IDs provided by DEG. We used RefSeq: NC_001416 as the reference 

genome for lambda phage and RefSeq: NC_005856 as the reference genome for P1 phage. 

We iterated over all genes annotated as protein coding and computed a score with a 

nucleotide language model for each gene. To compute the score, we provided the language 

model with different levels of context: (i) the sequence of the gene only, (ii) the sequence 

of the gene plus equally distributed context on both sides of the gene up to a total 8192 

bp, or (iii) the sequence of the gene plus equally distributed context on both sides of the 

gene up to a total 65,536 bp. If a gene extended beyond 8192 bp, we used the first 8192 bp 

of the gene sequences. We computed the score as the difference in log-likelihoods between 

a mutated sequence and the unmutated wild-type sequence. To mutate the sequence, we 

inserted multiple stop codons “TAATAATAA-TAGTGA” at an offset of 12 nucleotides into 

the sequence; for the 8192 and 65,536 bp context settings, we add context to both sides 

of the gene after the insertion. Additionally, for the 8192 bp setting, we tested three other 

strategies: (i) inserting a single stop codon “TAA” 12 nucleotides into the sequence, (ii) 

deleting the entire gene sequence (after which we provided 8192 context centered on the 

deleted gene) (fig. S27), or (iii) inserting stop codons tiled across the coding sequence at 

an interval of every 20 codons (or 60 bp) beginning with the first codon. As an additional 

control, we also used the gene’s linear position in the reference genome as the value with 

which to predict essentiality. If a model were simply using positional information to make 

essentiality predictions, the performance would be similar to this control.

We also used the conservation of a gene as another control. To estimate conservation, 

we extracted all protein sequences from the OpenGenome dataset. For each genome 
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corresponding to each essentiality study, we performed an all-by-all sequence search 

between all of the protein sequences in the genome-of-interest and all of the proteins in 

OpenGenome. To do this reasonably efficiently, we used mmseqs easy-search with default 

parameters, where the protein sequences in the genome-of-interest constituted the query 

sequences and the OpenGenome protein sequences constituted the target sequences. To 

compute the conservation of each gene, we counted the number of significant hits identified 

by mmseqs under a nominal E value threshold of 1 × 10−2. We assumed that a greater 

number of hits corresponds to higher conservation, which in turn corresponds to greater 

essentiality.

We used the change in log-likelihoods (or the control “scores”) to predict the binary gene 

essentiality labels and compute the strength of the prediction with the AUROC score and the 

average precision score as implemented in scikit-learn. We assessed statistical significance 

of the AUROC with a permutation-based method in which a null distribution is constructed 

by permuting the binary labels and recomputing the subsequent AUROC. We performed 

100,000 permutations to construct this null distribution.

Genome-scale generation and evaluation

We used Evo pretrained at 131k context to sample sixteen sequences of lengths ~1 Mb. We 

sampled witha temperature of 1.0 anda top-k value of 4 following a standard autoregressive 

sampling procedure (139). We prompted the model with four species-specific prompts:

1. |d_Bacteria;p_Tenericutes;c_Mollicutes; o_Mycoplasmatales; 

f_Mycoplasmataceae; g_Mycoplasma;s_Mycoplasma genitalium||

2. |d_Bacteria;p_Bacillota;c_Bacilli;o_Staphylococcales;f_Staphylococcaceae; 

g_Staphylococcus;s_Staphylococcus aureus||

3. |d_Bacteria;p_Pseudomonadota;c_Gammaproteobacteria;o_Enterobacterales; 

f_Enterobacteriaceae;g_Klebsiella;s_Klebsiella pneumoniae||

4. |d_Bacteria;p_Pseudomonadota;c_Gammaproteobacteria;o_Enterobacterales; 

f_Enterobacteriaceae;g_Escherichia;s_Escherichia||

These prompts correspond to the species Mycoplasma genitalium, Staphylococcus aureus, 

Klebsiella pneumoniae, and E. coli, respectively, and follow Greengenes-style lineage 

strings, which concatenate all taxa starting with the most ancestral and ending with the 

most current, separated by semicolons. A single character prefix is also added to each 

taxon indicating its rank. These lineages strings were prepended to each contig during the 

131k-context-extension phase of pretraining. We sampled four sequences for each prompt, 

leading to a total of sixteen sequences.

We evaluated these generations with CheckM (77), a tool that computes basic genome 

quality metrics based on whether a given long DNA sequence has similar properties as 

known bacterial genomes. CheckM uses Prodigal (140) to identify coding sequences and 

computes the coding density as one metric of genome quality. CheckM will also search for 

the presence of genes that are highly conserved across much of prokaryotic diversity. We 

divided all of our generations into discrete segments of up to 131,072 bp and computed 
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the distribution of CheckM coding densities across these crops. As a positive control, 

we randomly selected 100 bacterial genomes from GTDB and used CheckM to compute 

the coding densities for 131,072 bp crops from these genomes. As a negative control, 

we generated 1000 sequences of length 131,072 in which the four DNA base pairs were 

sampled uniformly at random. We then used CheckM to compute the coding densities on 

this random sequence. We also used tRNAscan-SE to search for tRNA sequences in our 

generated sequences and we used barrnap to search for rRNA sequences.

We used ESMFold to obtain atomic-level structure predictions for all of the Prodigal-defined 

coding sequences in each of our generations. We limited ESMFold structure predictions 

to coding sequences between 100 and 1024 amino acids, inclusive. We computed the 

mean backbone pLDDT for all predicted structures. We used the biotite Python package 

to compute the percentages of secondary structure elements for all predicted structures. We 

used FoldSeek easy-search to perform efficient TM-based alignment (- -alignment-type 1), 

and all other parameters set to their default values, to perform an all-by-all structural search 

between ESMFold structures corresponding to Evo-generated sequences and the structure 

predictions for UniRef50 provided in the AlphaFold Protein Structure Database (https://

alphafold.ebi.ac.uk/). Structure alignments were scored as the average of the query TMscore 

and the target TMscore, where a score greater than 0.4 was considered a structural match. 

We used these structural matches, along with GO terms assigned to UniRef50 clusters, 

to infer GO terms for the Evo-generated proteins as well. We used PyMOL to visualize 

protein structures corresponding to the five GO “molecular function” terms with the most 

representation among the Evo generated proteins.

We evaluated genomic sequence patterns including tetranucleotide and stop codon 

frequencies. Tetranucleotide usage deviations (TUDs) were calculated as previously 

described (78). TUD phylogenies were generated by hierarchical clustering using a distance 

matrix constructed from the Euclidean distances of log2transformed TUDs for each genome. 

Stop codon frequencies in the three reading frames of Prodigal-identified ORFs were stored 

as vectors consisting of nine scalar counts. Percentages of stop codons were calculated as 

the total sum of each stop codon (TAA, TAG, or TGA) relative to the total sum of all stop 

codons in a given vector. Stop codon ratios were calculated as the relative proportions of all 

nine scalars in a given vector.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data and materials availability:

Code and models related to this study are publicly available at https://github.com/evo-

design/evo and uploaded to Zenodo (153). The following models have been uploaded 

to Hugging Face under an open-source license: pretrained Evo model with 8k context 

(https://huggingface.co/togethercomputer/evo-1-8k-base); pretrained Evo model with 131k 

context (https://huggingface.co/togethercomputer/evo-1-131k-base); fine-tuned Evo model 

on CRISPR-Cas systems (https://huggingface.co/LongSafari/evo-1-8k-crispr); and fine-

tuned Evo model on IS200/IS605 systems (https://huggingface.co/LongSafari/evo-1-8k-

transposon). The OpenGenome dataset, including training, validation, and test splits, is 

publicly available on Hugging Face Datasets at https://huggingface.co/datasets/LongSafari/

open-genome. We used the following publicly available datasets for pretraining: bacterial 

and archaeal genomes from the Genome Taxonomy Database (GTDB) v214.1 (35); curated 

prokaryotic viruses from the IMG/VR v4 database (36); and plasmid sequences from the 

IMG/PR database (37). In addition to the above datasets, we also used portions of the 

following datasets for fine-tuning: NCBI RefSeq (102), UHGG (103), JGI IMG (104), The 

Gut Phage Database (105), The Human Gastrointestinal Bacteria Genome Collection (106), 

MGnify (107), Animal gut metagenomes (108), MGRAST (109), and Tara Oceans samples 

(110). Additional details on these datasets are provided in Materials and methods. DNA, 

RNA, and protein sequences generated during our validation experiments are available 

in data S1. All newly created materials are available upon reasonable request to the 

corresponding authors.
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Fig. 1. Pretraining a genomic foundation model across prokaryotic life.
(A) A model of genome sequences at single-nucleotide resolution could learn all of the 

information encoded in regulatory DNA and in the sequences of the other modalities 

within the central dogma (proteins, coding RNA, and ncRNA). Even further, it could learn 

covariation involving multiple genes and regulatory elements. The status of DNA as the 

fundamental layer of biological information makes it a productive modality at which to 

develop a biological foundation model. (B)A model that predicts the likelihood of the next 

token given a sequence of tokens, referred to as autoregressive modeling, can learn complex 

patterns underlying DNA sequences. StripedHyena is a deep signal processing architecture 

for long sequences, obtained by hybridizing attention and hyena operators. GLU, gated 

linear units. (C) We pretrained Evo, a 7-billion-parameter model with the StripedHyena 

architecture, on bacterial genome sequences from GTDB and IMG/PR and viral sequences 

from IMG/VR, excluding sequences from viruses that infect eukaryotic hosts. (D) A 

histogram depicting the sequence length of the genomes in GTDB. mb, megabases. (E) 

Pie charts depicting the taxonomic makeup of GTDB based on the kingdom (left) and 

phylum (right). (F) Results from a first-of-its-kind scaling laws analysis for large-scale DNA 

pretraining. Models improve monotonically with scale, with significant differences between 

architectures. Eval. PPL, evaluation perplexity. (G) To determine optimal architecture and 

scaling for Evo, we compared scaling rates of different models pretrained on the compute-

optimal frontier, i.e., with optimal allocation of compute between dataset size and model 

size.
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Fig. 2. Evo learns function across proteins, ncRNAs, and regulatory DNA.
(A) We obtained DMS datasets in which many mutations are made to a protein and a 

corresponding fitness score is experimentally measured for each protein variant. On the 

same set of mutated sequences, we compute its likelihood (or pseudolikelihood) under 

a protein language model or a nucleotide language model (LM). We then correlated 

these likelihoods with the experimental fitness measurements and used the strength of the 

correlation to measure the performance of zero-shot function prediction. (B) Correlation 

between zero-shot language model likelihoods or pseudolikelihoods and experimental fitness 

across nine prokaryotic protein DMS datasets. Bar height indicates the mean; each dot 

indicates a different DMS study. Nucl. Trans., Nucleotide Transformer. (C) We obtained 

datasets in which many mutations are made to a ncRNA and a corresponding fitness score is 

experimentally measured. Predictive performance is measured as in the method described in 

(A). (D) Correlation between zero-shot language model likelihoods or pseudolikelihoods 

and experimental fitness across seven ncRNA DMS datasets. Bar height indicates the 

mean; each dot indicates a different DMS study. (E) We obtained datasets in which many 

regulatory DNA sequences were measured for their effect on mRNA or protein expression. 

(F) Correlation between promoter activity across four studies and zero-shot language model 

likelihoods, sequence GC content, or supervised models. The supervised models include 

ridge regression or a CNN trained on one-hot embeddings or Evo embeddings, as well as 

a state-of-the-art supervised biophysical model of promoter activity, Promoter Calculator 

(52). Supervised models are evaluated in an out-of-domain prediction setting (Materials and 

methods). Ridge reg., ridge regression. Bar height indicates the mean; each dot indicates 
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a different promoter activity study. (G) We obtaineda dataset in which Kosuri et al. (56) 

measured protein expression of a gene downstream of ~12,000 promoter-RBS pairs in E. 
coli. When provided with both the promoter and RBS sequences, Evo has higher predictive 

performance of protein expression compared with zero-shot sequence statistics or a method 

trained with some supervision to predict protein expression data from mRNA sequence.
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Fig. 3. Fine-tuning on CRISPR-Cas sequences enables generative design of protein-RNA 
complexes.
(A) Design task: Generating sequences encoding CRISPR-Cas defense complexes composed 

of protein and ncRNA components. (B) Fine-tuning Evo on 8-kb-length genomic sequences 

containing CRISPR-Cas systems after its initial 8k pretraining phase. Special conditioning 

tokens (“cas9,” “cas12,” or “cas13”) prepended to the beginning of each sequence during 

fine-tuning. (C) When prompting with the token for a given type of Cas protein, the most 

common Cas protein found in the resulting generated sequences corresponds to that token 

prompt (Materials and methods). (D) Histograms representing the distribution of percentage 

identity of a generated Cas protein sequence to any Cas protein sequence in the training 

dataset. Samples from a model trained only on CRISPR-Cas sequences (top) and samples 

from a model fine-tuned on CRISPR-Cas off the base Evo model (bottom). Both models 

were trained on CRISPR-Cas sequences using the same hyperparameters. (E) Annotated 

core protein-coding genes and ncRNA components found in type II CRISPR systems in the 

EvoCas9–1 locus as determined by pHMMs and CRISPR ncRNA prediction algorithms. 

(F) Time course results for SpCas9 and EvoCas9–1 cleavage reactions after incubation with 

cognate sgRNAs and 1 nM DNA target at a 10:10:1 molar ratio of Cas9:sgRNA:target. 

Nontargeting guide RNA used to verify in vitro cleavage specificity. (G) Predicted 

secondary structure of the sgRNA from the EvoCas9–1 generation. Secondary structure 

differences between the EvoCas9–1 sgRNA and the SpCas9 sgRNA are highlighted in red. 

(H) AlphaFold3 (AF3) structure prediction of EvoCas9–1 aligned to the crystal structure of 

SpCas9 (PDB: 4OO8). (I) AlphaFold3 (AF3) structure prediction of the EvoCas9–1 sgRNA 

aligned to the crystal structure (PDB: 4OO8) of the SpCas9 sgRNA (79 nt scaffold + 20 nt 
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spacer). nt, nucleotide. (J) AlphaFold3 (AF3) structure prediction of EvoCas9–1 in complex 

with its codesigned sgRNA (81 nt scaffold + 20 nt spacer).
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Fig. 4. Fine-tuning on IS200/IS605 sequences enables generative design of transposable biological 
systems.
(A) IS200 and IS605 MGEs contain a TnpA transposase and are flanked by left and right 

end terminal hairpins that interact with the TnpA to accomplish transposition. IS605 MGEs 

additionally encode a TnpB-ωRNA complex that performs DNA cleavage. Our design task 

is to produce sequences that contain these DNA, ncRNA, and protein components. (B) 

We fine-tuned Evo, after its initial 8k pretraining phase, on natural sequences containing 

IS200/IS605 systems. (C) Histograms representing the distribution of the percentage identity 

of Evo-generated TnpA and TnpB proteins to their best match in the fine-tuning set of 

natural TnpA and TnpB proteins. (D) Schematic of the in vitro assay for evaluating designed 

TnpA activity on codesigned DNA ends. Excision will produce a band corresponding to 
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the formation of the RE-LE junction in the resulting circular product, and (re-)insertion 

will produce a band from the joining of two ssDNA substrates, both detectable by a 

single PCR. (E) Schematic of the Evo-generated IS200-like system, ISEvo1, containing 

element annotations and its relevant DNA and protein features. (F) A 2% agarose gel 

with SYBR Gold showing that ISEvo1 TnpA functions in vitro on ssDNA substrates, 

requiring the catalytically active tyrosine (Y124) and with substantially reduced activity on 

dsDNA substrates. (G) Example reads from nanopore sequencing of PCR products from 

the ISEvo1 TnpA in vitro assay. (H) Schematic of the Evo-generated IS605-like system, 

ISEvo2, containing element annotations and its relevant DNA, RNA, and protein features. 

(I) A 2% agarose gel with SYBR Gold showing that ISEvo2 TnpA functions in vitro on 

ssDNA substrates, requiring the catalytically active tyrosine (Y125) and with substantially 

reduced activity on dsDNA substrates. (J) Example reads from nanopore sequencing of PCR 

products from the ISEvo2 TnpA in vitro assay.
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Fig. 5. Evo learns mutational effects on organismal fitness across diverse bacterial and phage 
genomes.
(A) For genome-scale prediction and generation tasks, we first pretrained Evo on sequences 

with 8192 tokens and then extended its context window size in a second pretraining phase 

to sequences of 131,072 tokens. (B) We performed an in silico, genome-wide mutagenesis 

screen in which we introduced premature stop codons at each coding sequence in a genome. 

We computed the language model (LM) likelihood of the mutated gene sequence plus some 

amount of additional genomic context (up to 66 kb). We then took the ratio of this likelihood 

to the likelihood of the unmutated sequence. We tested whether these likelihood ratios would 

be predictive of gene essentiality. (C) Violin and strip plots of the distribution of the strength 

of gene essentiality prediction across 58 studies (each dot corresponds to a different study), 

in which each study conducted a genome-wide essentiality screen in a bacterial (N = 56) 

or phage (N = 2) species. We measured predictive performance as the AUROC in which 

the LM likelihood ratio is used to predict a binary label of “essential” or “nonessential.” 

“Gene-only context” indicates that the model is provided with only the gene sequence and 

no additional flanking genomic context. “8k context” and “66k context” indicate that the 

LM is provided with the gene sequence and flanking genomic context up to a total of 

8192 or 65,536 tokens, respectively. Evo has some predictive performance with gene-only 

context, has vastly improved performance from gene-only to 8k context, and some outlier 

improvements from 8k to 66k context. (D) Histograms representing the distributions of the 

log of the likelihood ratios (“Evo score”) for the essential genes (blue) and the nonessential 

genes (yellow) in two genomes: lambda phage (top) and P. aeruginosa (bottom). These 

results are based on providing Evo with 66k context.
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Fig. 6. Evo generates megabase-scale sequences with plausible genomic architecture.
(A) We prompted Evo with species-level tokens used during the second pretraining stage. 

We use bacterial species prompts and generate sequences of ~650 kb in length. (B) 

Histograms depicting the distribution of coding density scores among 131-kb crops of 

sequences generated by Evo (“Evo generated”), sequences from natural bacteria (“natural 

genomes”), or sequences in which the four base pairs were sampled uniformly at random 

(“random sequences”). (C) Arrow plots depicting the organization of coding sequences on 

an example 131-kb sequence generated by Evo, derived from a natural genome, or sampled 

randomly. Coding sequences are depicted as arrows in which the horizontal length of the 

arrow corresponds to the genomic interval and the direction of the arrow indicates the strand. 

The top and bottom rows of arrows indicate the 5′-to-3′ and 3′-to-5′ strands, respectively, 

and the Evo-generated sequence was designated as the 5′-to-3′ strand. Both Evo-generated 

and natural genomes exhibit operon-like structure in which clusters of colocated genes are 

on the same strand. (D and E) An ~1-Mb generated sequence is represented as an arrow 

plot, as in (C). Below this arrow plot are ESMFold structure predictions of all protein 

coding sequences from 100 through 1024 amino acids in length, as identified by Prodigal. 
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Structure predictions are aligned to natural proteins, which are then mapped to associated 

GO molecular function terms (Materials and methods). The largest GO categories are 

displayed as clusters alongside a large cluster containing all other proteins. ATP, adenosine 

triphosphate. (F) Log2 of TUDs of Evo-generated versus natural genomes for each species 

prompt. Statistics are the Pearson correlation coefficient test. Shaded regions indicate a 95% 

confidence interval. (G) Hierarchical clustering of Evo-generated and natural genomes based 

on Euclidean distances of the TUDs. (H) Percent usage of each stop codon in all three 

reading frames of Evo-generated, natural, and random ORFs.
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