
J. Mol. Biol. (1988) 202, 865-884 

Predicting the Secondary Structure of Globular 
Proteins Using Neural Network Models 

Ning Qian and Terrence J. Sejnowski 

Department of Biophysics 
The Johns Hopkins University 
Baltimore, MD 21218, U.S.A. 

(Received 25 September 1987, and in revised form 14 March 1988) 

We present a new method for predicting the secondary structure of globular proteins based 
on non-linear neural network models. Network models learn from existing protein 
structures how to predict the secondary structure of local sequences of amino acids. The 
average success rate of our method on a testing set of proteins non-homologous with the 
corresponding training set was 643% on three types of secondary structure (u-helix, 
b-sheet, and coil), with correlation coefficients of C,=O-41, C,=O*31 and CcO,, =0*41. These 
quality indices are all higher than those of previous methods. The prediction accuracy for 
the first 25 residues of the N-terminal sequence was significantly better. We conclude from 
computational experiments on real and artificial structures that no method based solely on 
local information in the protein sequence is likely to produce significantly better results for 
non-homologous proteins. The performance of our method of homologous proteins is much 
better than for non-homologous proteins, but is not as good as simply assuming that 
homologous sequences have identical structures. 

1. Introduction 

Most’ of our knowledge of protein structure comes 
from the X-ray diffraction patterns of crystallized 
proteins. This method can be very accurate, but 
many steps are uncertain and the procedure is time- 
consuming. Recent developments in genetic 
engineering have vastly increased the number of 
known protein sequences. In addition, it is now 
possible to selectively alter protein sequences by 
site-directed mutagenesis. But to take full 
advantage of these techniques it would be helpful if 
one could predict the structure of a protein from its 
primary sequence of amino acids. The general 
problem of predicting the tertiary structure of 
folded proteins is unsolved. 

Information about the secondary structure of a 
protein can be helpful in determining its structural 
properties. The best way to predict the structure of 
a new protein is to find a homologous protein whose 
structure has been determined. Even if only limited 
regions of conserved sequences can be found, then 
template matching methods are applicable (Taylor, 
1986). If no homologous protein with a known 
structure is found, existing methods for predicting 
secondary structures can be used but are not always 
reliable. Three of the most commonly used methods 
are those of Robson (Robson & Pain, 1971; Garnier 
et al., 1978), of Chou & Fasman (1978), and Lim 
(1974). These methods primarily exploit, in 

different ways, the correlations between amino 
acids and the local secondary structure. By local, 
we mean an influence on the secondary structure of 
an amino acid by others that are no more than 
about ten residues away. These methods were based 
on the protein structures available in the 1970s. The 
average success rate of these methods on more 
recently determined structures is 50 to 53% on 
three types of secondary structure (a-helix, /?-sheet, 
and coil: Nishikawa, 1983; Kabsch & Sander, 
1983a). 

In this paper, we have applied a new method for 
discovering regular patterns in data that is based 
on neural network models. The brain has highly 
developed pattern matching abilities and neural 
network models are designed to mimic them. This 
study was inspired by a previous application of 
network .learning to the problem of text-to-speech. 
In the NETtalk system (Sejnowski & Rosenberg, 
1987), the input to the network is strings of letters 
representing words and the output is strings of 
phonemes representing the corresponding speech 
sounds. Predicting the secondary structure of a 
protein is a similar problem, in which the input 
symbols analogous to letters are amino acids and 
the output symbols analogous to phonemes are the 
secondary structures. 

The goal of the method introduced here is to use 
the available information in the database of known 
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protein structures to help predict the secondary 
structure of proteins for which no homologous 
structures are available. The known structures 
implicitly contain information about the bio- 
physical properties of amino acids and their 
interactions. This approach is not meant to be an 
alternative to other methods that have been 
developed t,o study protein folding that take 
biophysical properties explicitly into account, such 
as the methods of free energy minimization 
(Scheraga, 1985) and integration of the dynamical 
equations of motion (Karplus, 1985; Levitt, 1983). 
Rather, our method provides additional constraints 
to reduce the search space for these other methods. 
For example, a good prediction for the secondary 
structure could be used as the initial conditions for 
energy minimization, or as the first step in other 
predictive techniques (Webster et al., 1987). 

2. Methods 
(a) Database 

Proteins with known structures were obtained from the 
Brookhaven National Laboratory. Secondary structure 
assignments based on the atomic co-ordinates were 
assigned by the method of Kabsch & Sander (19836). We 

selected a representative sample of proteins from the 
database that limited the number of almost identical 
sequences, such as the similar types of haemoglobin. 
Table 1 contains a listing of the 106 proteins that were 
used in our study. A subset of these proteins were taken 
out for testing and the remaining proteins used for the 
training set. Our results were highly sensitive to 
homologies between proteins in the testing and training 
sets, so homologies were exhaustively searched using 
diagon plots for all pairs of proteins (Staden, 1982). One 
of our 2 testing sets, listed in Table 2A, had practically no 
homologies in the training set. (a-Lytic protease in the 
testing set has very weak homologies with proteinase A in 
the training set but was included in the testing set to 
balance the proportion of residues with b-sheet structure. 
The inclusion of this protein reduced the overall testing 
accuracy, because /?-sheet w&s the most difficult structure 
to predict.) A 2nd testing set with homologies is listed in 
Table 3A. The 6 proteins in the 2nd testing set had an 
average homology of 73% with 6 proteins in the 
corresponding training set, but little or no homology with 
the other training proteins, which were greatly in the 
majority. Special care was taken to balance the overall 
frequencies of a-helix, /?-sheet and coil in the training and 
testing sets, as shown in Tables 2 and 3. The sequence of 
amino acids and secondary structures were concatenated 
to form 2 separate long strings for each of the training 
and testing sets, with spacers between the proteins to 
separate them during training. 

Table 1 
All proteins used to train and test networks 

Code Protein name N ni h P 

labp 
1aCX 
lapr 
laza 
lazu 
lbp2 
1 cat 
lcc5 
1 ccr 
lcpv 
lcrn 
1ctx 
1 cy3 
ICYC 

lecd 
lest 
1 fc2 
lfdh 
lfdx 
lfxl 
lgcn 
lgcr 
lgfl 

I&@ 
lgpl 
lhds 
1 hip 
lhmq 
1 ig2 
1 ige 
lins 
lldx 
llzl 
llzm 
llzt 
lmbd 

1 -Arabinose-binding protein 
Actinoxanthin 
Acid protease 
Azurin 
Azurin 
Phospholipase A2 
Carbonic anhydrase form c 
Cytochrome c5 (oxidized) 
Cytochrome c (rice) 
Calcium-binding parvalbumin b 
Crambin 
a-Cobratoxin 
Cytochrome c3 
Ferrocytochrome c 
Haemoglobin (deoxy) 
Tosyl-elastase 
Immunoglobulin FC-Frag B complex 
Haemoglobin (deoxy, human fetal) 
Ferredoxin 
Flavodoxin 
Glucagon (pH 6-pH 7 form) 
y-Crystallin 
Insulin-like growth factor 
Insulin-like growth factor 
Glutathione peroxidase 
Haemoglobin (sickle cell) 
High potential iron protein 
haemerythrin (met) 
Immunoglobunlin Gl 
Fc fragment (model) 
Insulin 
Lactate dehydrogenase 
Lysozyme 
Lysozyme 
Lysozyme, triclinic crystal form 
Myoglobin (deoxy, pH 8.4) 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
1 
1 
1 
1 
1 
1 
4 
4 
1 
4 
2 
2 
4 
1 
1 
1 
1 
1 

All 106 18 182 
All 0 47 61 
All 11 39 274 

1 13 43 73 
All 14 34 77 
All 54 8 61 
All 18 68 170 
All 39 0 44 
All 44 0 67 
All 52 6 50 
All 19 4 23 
All 4 16 51 
All 16 0 102 
All 35 0 68 
All 97 0 39 
All 13 82 145 
All 36 91 125 
All 192 0 96 
All 5 4 45 
All 43 32 72 
All 14 0 15 
All 5 77 92 
All 20 0 50 
All 20 4 43 
1.2 39 29 117 
I,2 152 0 135 
All 10 9 66 

1 73 0 40 
All 15 186 255 
1 16 121 185 

12 22 3 27 
All 114 45 170 
All 39 10 81 
All 83 14 67 
All 42 8 79 
All 113 0 40 
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Table 1 (continued) 

( :ode Protein name N ni h e - 

lmbs 
lmlt 
lnxb 

’ P2P 
lpfc 

lppd 
1PPt 
‘PYP 
1 rei 
lrhd 
lrn3 
lsn3 
ltim 
1 tgs 
2act 
2adk 
2tllp 
Zape 
lapp 
2b5c 
2rab 
Zrcg 
Pcdv 
2cyp 
%dhh 
%fdl 
dgch 
Ign.5 
zgrs 
2icb 
2kai 
%Ih 1 
2Ihb 
2mcp 
2mdh 
2mt:! 
Zpab 
2rhr 
lsbt 
“sga 
“sns 
“sod 
2ssi 
zstv 
2taa 
“tb\ 
3r2t 
3rna 
3fXC. 

%pd 
3hhb 
3pq 

3p& 
3pfzm 
3@ 
3sgb 
3t1n 
451c 
M’s 
4dfr 
Ifx 11 
Isbv 
5atc 
5cpa 
5ldh 
5pt i 
5rx n 
6adh 
6api 
Xcat 

Myoglobin (met) 1 All 111 0 42 
Melittin 2 1 22 0 4 
Neutrotoxin b 1 All 0 26 36 
Phospholipase A2 1 All 45 6 73 
Fragment of IgG 1 All 4 34 73 
2-hydroxyethylthiopapain d 1 All 49 36 127 
Avian pancreatic polypeptide 1 All 18 0 18 
Inorganic pyrophosphatase 1 All 36 28 217 
Immunoglobulin B-J fragment V 2 1 0 51 56 
Rhodanese 1 All 81 32 180 
Ribonuclease A 1 All 22 43 59 
Scorpion neurotoxin (variant 3) 1 All 8 12 45 
Triose phosphate isomerase 2 1 106 42 99 
Trypsinogen complex 2 All 25 96 161 
Actinidin (sulphhydryl proteinase) 1 All 56 40 122 
Adenylate kinase 1 All 108 22 64 
a-Lytic protease 1 All 8 104 86 
Acid proteinase, endothiapepsin 1 All 9 102 197 
Acid proteinase, penicillopepsin 1 All 30 147 146 
Cytochrome b5 (oxidized) 1 All 21 21 43 
Carbonic anhydrase form b 1 All 17 77 Iti;! 
Cytochrome c (prime) 2 1 90 0 37 
Cytochrome c3 1 All 27 10 70 
Cytochrome e peroxidase 1 All 134 16 143 
Haemoglobin (horse, deoxy) 2 All 172 0 I16 
Ferredoxin 1 All 0 0 106 
y-Chymotrypsin a 3 All 14 78 147 
Gene 5/DNA binding protein 1 All 0 4 83 
Glutathione reductase 1 All 125 86 25( ) 
Calcium-binding protein 1 All 47 0 2X 
Kallikrein a 3 All 17 86 18X 
Leghaemoglobin (acetate, met) 1 All 107 0 lti 
Haemoglobin V (cyano, met) 1 All 100 0 49 
Ig Fab mcpc603/phosphocholine 2 All 8 211 224 
Cytoplasmic malate dehydrogenase 2 All 213 110 32 - 1 
Cd, Zn metallothionein 1 All 0 0 6 1 
Prealbumin (human plasma) 2 1 x 59 47 
Immunoglobulin B-J fragment V-MN 1 All 0 49 65 
Subtilisin novo 2 All 59 38 179 
Proteinase A 1 All 12 98 71 
Staphylococcal nuclease complex 1 All 26 28 XT 
Cu.& superoxide dismutase 4 1 0 58 93 
Streptonzyces subtilisin inhibit0 1 All 17 26 64 
Satellite tobacco necrosis virus 1 All 18 82 X4 
Taka-amylase a 1 All 99 69 310 
Tomato bushy stunt virus 6 I,%.5 8 164 3% I 
(‘ytochrome c2 (reduced) 1 All 44 0 6X 
Concanavalin A 1 ,411 0 96 141 
Ferredoxin 1 ,411 5 15 76 
Glyceraldehyde-3-P-dehydrogenase 2 1 85 TO 179 
Haemoglobin (deoxy) 2 -4411 196 0 92 
Plastocyanin (Hg” substituted) 1 All 4 35 MO 
Phosphoglycerate kinase complex 1 All 143 46 226 
Phosphoglycerate mutase 1 All 69 15 146 
Rat mast cell protease 2 I 12 83 129 
Proteinase R 2 All 22 IO7 107 
Thermolysin 1 All 118 62 146 
Cytochrome ~551 (reduced) 1 All 38 0 44 
Citrate synthase complex 2 1 223 18 196 
Dihydrofolate reductase 2 1 33 49 77 
Flavodoxin (semiquinone form) 1 All 47 29 62 
Southern bean mosaic virus coat protein 3 I .3 56 142 “2 4 
Aspartate carbamoyltransferase 4 1.2 134 62 26X 
(Jarboxypeptidase 1 All 108 M 149 
Lactate dehydrogenase complex I 411 124 31 178 
Trypsin inhibitor 1 All 8 14 36 
Rubredoxin (oxidized) 1 All 0 x 46 
Alcohol dehydrogenase complex 2 1 58 72 244 
Modified a-1-antitrypsin 2 All 109 124 142 
Catalase 2 1 137 77 284 

S, total number of subunit chains in the protein; ni, subunit numbers used in this study; h, a-helix: 
Y, p-sheet; -, coil. 
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Table 2 Table 3 
Protein8 in teeting and training set 1 Protein8 in testing and training set 2 

A. Testing set proteins with no homology with corresponding 
training set 
Code Protein name 

1 abp L-Arabinose-binding protein 
lacx Actinoxanthin 
lhmq Haemerythrin (met) 
1 ige Fc fragment (model) 
lnxb Neurotoxin 13 

‘wd 2-Hydroxyethylthiopapain d 

1PYP Inorganic pyrophosphataae 
Pact Actinidin (sulphhyklryl proteinaae) 
2alp a-Lytic protease 
2cdv Cytochrome c3 
tgrs Glutathidne reductase 
21hb Haemoglobin V (cyano,met) 
2sbt Subtilisin novo 

%pd Glyceraldehyde-3-P-dehydrogenase 
6api Modified a-1-antitrypsin 

Total number of residues: 3520 

Amino acid fractions 
A:0~090 c:o.o12 D : 0.055 E : 0.051 
G : 0.091 H : 0.024 I : 0.055 K : 0.068 
M:0.019 N:0@45 P:O.O46 Q : 0.035 
S : 0.072 T : 0.070 v : 0.079 w : 0.014 

Secondary structure fractions 
h, 0.241 e, 0.213 -, 0.547 

13. The training set 

F : 0.038 
L : 0.066 
R : 0.032 
Y : 0.033 

Training set proteins: proteins in Table 1 minus Table 2A 

Total number of residues: 18105 

Amino acid fractions 
A : 0.087 c : 0.015 D : 0.056 E : 0.048 F : 0.038 
G : 0.086 H : 0.024 I : 0.045 K : 0.067 L : 0.083 
M : 0.015 N : 0.048 P : 0.045 Q : 0.036 R : 0.034 
s : 0.077 T : 0.064 v : 0.074 w : 0.015 Y : 0.035 

Secondary structure fractions 

h, 0.254 e, 0.201 -, 0.546 

(b) Performance meaSurea 

There are many ways to assess the performance of a 
method for predicting secondary structures. The most 
commonly used measure is a simple success rate, or Q3, 
which is the percentage of correctly predicted residues on 
all 3 types of secondary structure: 

(1) 

where N is the total number of predicted residues and P, 
is the number of correctly predicted secondary structures 
of type a. The correl&ion coefficient (Mathews, 1975) is 
another useful measure, defined here for the a-helix: 

where pE is the number of positive cases that were 
correctly predicted, n, is the number of negative cases 
that were correctly rejected, Ok is the number of over- 

predicted cases (false positives), and U, is the number of 
underpredicted cases (misses). Similar expressions hold 
for C, and CFoII. The Q3 measure will be used to assay the 

A. Testing set proteins with hmndcgy with correqonding 
training set 
Code Protein name 

‘P2P Phospholipaae A2 
Pape Acid proteinase, endothiapepsin 
2rhe Immunoglobulin B-J fragment V-MN 
2sga Proteinase A 
3hhb Haemoglobin (deoxy) 
51dh Lactate dehydrogenase complex 
Total number of residues: 1357 

Amino acid fractions 
A:O.lOl c : 0.012 D : 0.051 E : 0.032 F : 0.034 
G:O.l03 H : 0.026 I : 0.041 K : 0.047 L : 0.091 
M : 0.012 N : 0.054 P : 0.036 Q : 0.033 R:0.021 
s : 0.096 T : 0.070 v : 0.084 w :0.012 Y : 0.035 

Secondary structure fractions 
h, 0.292 e, 0.211 -, 0.498 

IS. The training set 

Training set proteins: proteins in Table 1 minus Table 3A 

Total number of residues: 20268 

Amino acid fractions 
A : 0.087 c : 0.015 D : 0.056 E : 0.049 F : 0,038 
G : 0.086 H : 0.024 I : 0.047 K : 0.068 L : 0.080 
M : 0.016 N : 0.047 P : 0.046 Q : 0.036 R : 0.034 
s : 0.075 T : 0.064 v : 0.074 w : 0.015 Y : 0.035 

Secondary structure fractions 
h, 0.249 e, 0.202 -, 0.549 

overall success rate of network models during learning, 
although it is not as good an indicator as the individual 
correlation coefficients. 

(c) Neural networks and their properties 

The neural network models used in this study are based 
on a class of supervised learning algorithms first 
developed by Rosenblatt (1959) and Widrow t Hoff 
(1960). These are networks of non-linear processing units 
that have adjustable connection strengths, or weights 
between them, and learning consists in altering the values 
of the weights in response to a “teaching” signal that 

provides information about the correct classification in 
input patterns. In the present study, the teacher was the 

secondary structure assignments of Kabsch & Sander 
(19833) based on the Brookhaven databank of protein 
structures. In this section, we give a brief introduction to 
feedforward neural networks and the back-propagation 
learning algorithm used in this study. Further details can 
be found in Rumelhart et al. (1986) and Sejnowski & 
Rosenberg (1987). 

A feedforward network is composed of 2 or more layers 
of processing units. The first is the input layer, the last is 
the output layer, and all the other layers between are 
termed hidden layers. There are feedforward connections 
from all the units in one layer to those on the next layer, 
as shown in Fig. 1. The strength of the connection from 
unit j to unit i, called a weight, is represented by a real 
number, wij. The state of each unit, si, has a real value in 
the range between 0 and 1. The states of all the input 
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Figure 1. A diagram of network architecture. The 
standard network had 13 input groups, with 21 
units/group, representing a stretch of 13 contiguous 
amino acids (only 7 input groups and 7 units/group are 
illustrated). Information from the input layer is trans- 
formed by an intermediate layer of “hidden” units to 
produce a pattern of activity in 3 output units, which 
represent the secondary structure prediction for the 
central amino acid. 

units that form an input vector are determined by an 
input window of amino acid residues (typically 13) 
through an input coding scheme (see the next section). 
Starting from the 1st hidden layer and moving toward 
the output layer, the state of each unit i in the network is 
determined by: 

1 
si=F(Ei)=-* 

1 + @, (3) 

where the total input f& to unit i is: 

Ei = If wi,aj + bi (4) 
j 

and bi is the bias of the unit, as shown in Fig. 2. 
The goal of this network is to carry out a desired 

input-output mapping. For our problem, the mapping is 
from amino acid sequences to secondary structures (as 
explained in detail in the next section). The back- 
propagation learning algorithm can be used in networks 
with hidden layers to find a set of weights that performs 
the correct mapping between sequences and structures. 
Starting with an initial set of randomly assigned 
numbers, the weights are altered by gradient descent to 
minimize the error between the desired and the actual 
output vectors. 

A network with a single layer of modifiable weights (i.e. 
no hidden layers), called a “perceptron” (Rosenblett, 
1959), has been analysed extensively by Minsky & Papert 
(1909). An important concept introduced by them is the 
order of a mapping, defined as the smallest number n 
such that the mapping can be achieved by a perceptron 
whose input have supports equal to or smaller than n. 
The support of an input unit is the number of elements in 
the input array that are encoded by the input unit. For 
example, most of our networks use a local coding scheme 
in which the input units have a support of 1, since each of 
them codes only a single amino acid. We have also used 
2nd order conjunctive encodings in which an input unit 
encodes combinations of 2 amino acids, and thus has a 
support of 2. Hy definition, if a mapping can be 

input E 

Figure 2. The output F(E) of a processing unit as a 
function of the sum E of its inputs. 

performed by a perceptron with the support of all of its 
input units equal to 1, then the order of this mapping is 
1. Minsky $ Pepert (1969) showed very elegantly that 
many interesting mappings are of very high order and 
cannot be performed by a perceptron that does not have 
any input units with support larger than 1. 

For the convenience of description, we define nth order 
perceptrons as those whose input units have size of 
support up to and including n. According to the above 
discussion, a 1st order perceptron can perform only a 
limited part of a higher order mapping correctly. In this 
paper, we define the 1st order features of a mapping as 
the part of the mapping that can be predicted by any 1st 
order perceptron, and the 2nd order features as the 
additional part of the mapping that can be performed by 
any 2nd order perceptron, and so on. With regard to the 
problem of predicting secondary structure of proteins, the 
1st order features are the pert of the mapping that can 
be predicted by each individual amino acid in the input 
window, and the 2nd order features are the part 
determined by all pairs of amino acids. 

In principle, networks with hidden layers can extract 
higher-order features even when all of their input units 
have a support of 1. Learning algorithms for networks 
with more than one layer of modifiable weights have been 
introduced only recently (Ackley et aZ., 1985; Rumelhart 
et al., 1986). Not all of the information available may be 
extractable with a particular learning algorithm. An 
example is given in Results, section (a). where the back- 
propagation learning algorithm fails to recover a small 
amount of the 1st order features available to a 1st order 
perceptron. 

A 1st order feature as defined above is stronger than 
the 1st order statistics used in standard statistical 
treatments. (We thank Dr Richard Durbin for pointing 
this out to us.) We illustrate the difference in the 
following example. Consider 2 sets of input-output 
mappings in Table 4. Define P(I,,O) as the joint 
probability that the ith (= 1, 2, 3, 4) input unit is equal 
to li (=O, 1) and the output unit is equal to 0 (=O, 1). 
The joint probabilities are identical for both sets of 
mappings as shown in Table 5. Therefore, these 2 sets 
have the same 1st order statistics. However. these 2 sets 
can be learned by 2 different 1st order perceptrons with 
the weights given in Table 6. These 1st order perceptrons. 
therefore, have extracted more information than lst, 
order statistics. This observation will be used to explain 
why the neural network method yields better results than 
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Table 4 
Two sets of mappings with identical first 

order statistics 

Set 1 Set 2 

Input output Input output 

0 0 1 0 1 0 0 1 0 0 
0 0 0 1 0 0 0 0 1 1 
0 1 1 0 0 1 0 1 0 1 
10 0 1 1 0 1 0 1 0 

the information theory method of Robson & Suzuki 
(1976). 

(d) Network design 

The network design used in this study is similar to the 
NETtalk system (Sejnowski & Rosenberg, 1987). The 
network maps sequences of input symbols onto sequences 
of output symbols. Here, the input symbols are the 20 
amino acids and a special spacer symbol for regions 
between proteins; the output symbols correspond to the 3 
types of secondary structures: u-helix, b-sheet and coil. 

A diagram of the basic network is shown in Fig. 1. The 
processing units are arranged in layers, with the input 
units shown on the bottom and output units shown at the 
top. The units on the input layer have connections to the 
units on the intermediate layer of “hidden” units, which 
in turn have connections to the units on the output layer. 
In networks with a single layer of modifiable weights 
(perceptrons), there are no hidden units, in which case the 
input units are connected directly to the output layer. 

The network is given a contiguous sequence of, 
typically, 13 amino acids. The goal of the network is to 
correctly predict the secondary structure for the middle 
amino acid. The network can be considered a “window” 
with 13 positions that moves through the protein, 1 
amino acid at a time. 

The input layer is arranged in 13 groups. Each group 
has 21 units, each unit representing 1 of the amino acids 
(or spacer). For a local encoding of the input sequence, 1 
and only 1 input unit in each group, corresponding to the 
appropriate amino acid at each position, is given a value 
1, and the rest are set to 0. This is called a local coding 
scheme, because each unit encodes a single item, in 

Table 5 
First order statistics for the two mappings in Table 4 

P(Z,, O=O) 

4 Input position i 
1 2 3 4 

0 0.5 0.25 0.25 0.25 
I 0 0.25 0.25 0.25 

P(I,, o= 1) 

4 In position i 
1 2 3 4 

0 0.25 0.5 0.25 0.25 
1 0.25 0 0.25 0.25 

Table 6 
Weights for the two mappings in Table 4 

Input position i 
Set 1 2 3 4 

1 2 -2 1 -1 
2 2 2 -1 1 

Two sets of weights for the 2 single-layer networks that 
perform the mappings in Table 4. The biases of all the units 
are 0. 

contrast with a distributed coding scheme in which each 
unit participates in representing several items. In some 
experiments, we used distributed codings in which units 
represented biophysicel properties of residues, such as 
their hydrophobicity. Another coding scheme that we 
used was the 2nd order conjunctive encoding, in which 
each unit represented a pair of residues, 1 residue from 
the middle position and a 2nd residue at another position. 
Many more units are needed to represent a string of 
amino acids with conjunctive encoding, but this form of 
encording makes explicit information about the 2nd order 
features. 

In the basic network, the output group has 3 units, 
each representing one of the possible secondary structures 
for the centre amino acid. In other versions, more output 
units were used to represent a larger number of possible 
secondary structures, or several groups of output units 
were used to represent a sequence of secondary 
structures. See Results for more details. For a given input 
and set of weights, the output of the network will be a set 
of numbers between 0 and 1. The secondary structure 
chosen was the output unit that had the highest activity 
level; this was equivalent to choosing the output unit 
that had the least mean-square error with the target 
outputs. 

Based on the discussions in section (c), above, a 
network with a single layer of modifiable weights and 
using a local coding scheme for the amino acid sequence is 
a 1st order perceptron and so can detect only 1st order 
features, i.e. the independent contributions of each amino 
acid to the secondary structure. However, a network can 
extract higher order features, such as correlations 
between pairs of amino acids and the secondary 
structure, if conjunctive input coding schemes are used to 
construct higher-order perceptrons or “hidden” pro- 
cessing units are introduced between the input and 
output layers. 

(e) Network training procedure 

Initially, the weights in the network were assigned 
randomly with values uniformly distributed in the range 
[-0.3, 0.31. The initial success rate was at chance level, 
around 33%. The performance was gradually improved 
by changing the weights using the back-propagation 
learning algorithm (Rumelhart et al., 1986). During the 
training, the output values are compared with the desired 
values, and the weights in the network are altered by 
gradient descent to minimize the error. Details about our 
implementation of the learning procedure can be found in 
Sejnowski & Rosenberg (1987). A diffent random position 
in the concatenated training sequence of amino acids (see 
section (a), above) was chosen as the centre position of 
the input window at each training step. The surrounding 
amino acids were then used to clamp the input units in 
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the window. All the amino acids in the training set were 
sampled once before starting again. This random 
sampling procedure was adopted to prevent erratic 
oscillations in the performance that occurred when the 
amino acids were sequentially sampled. The performance 
of the network on the testing set was monitored 
frequently during training and the set of weights was 
kept that achieved the best average success rate on the 
testing set, The training time of a network with 13 input 
groups and 40 hidden units was approx. 1 h of Ridge 32 
time (equivalent to a VAX 780 FPA) per 10,000 residues. 

The performance of the network on the training and 
testing sets depends on many variables, including the 
number of training examples, the number of hidden units, 
and the amount, of homology between the training and 
testing sets. I f  there are too few training examples, the 
network can “memorize” all of the correct outputs 
because of the large capacity of the weights. The resulting 
network is accurate on the training set but makes poor 
predictions on the testing set. When the number of 
training examples is large. the learning procedure finds 
common features amongst the examples in the training 
set that enable the network to correctly predict the 
secondarv structure of testing proteins that were not 
included”in the training set. The ability of a network to 
extract higher order features from the training set 
depends on the layer of hidden units and the types of 
input, encoding. A significant amount of information 
about homologies between proteins is contained in their 
higher-order features (see below). 

3. Results 

(a) A rti$cial structures 

Before t,raining networks on the database of 
known protein structures, we first tested the 
method on artiticial structures with known input- 
output relations. The results of these experiments 
helped in interpreting the results of training on real 
proteins whose statistics are not known a priori. 

(i) Generation of ,first order art@ial structures 

Amino acid sequences were chosen either from 
real proteins in the training set or generated from 
the statistics of those proteins. The first step in the 
lat,ter method was to measure the frequency of 
occurrence of each amino acid in the database, as 
given in Table 2. Amino acids were chosen 
randomly with the same frequencies and assembled 
into a long sequence. Once the primary amino acid 
sequences were determined, the secondary struc- 
tures were then assigned to each amino acid 
according to the information given in Tables 1, 2 
and 4 of Gamier et al. (1978), which were based on 
the statistics of real proteins. These Tables were 
used by Robson and co-workers to predict 
secondary structures, but here we used them to 
generate artificial secondary structures. 

Each amino acid in a window of 17 amino acids, 
eight on either side of the central residue, 
independently contributed toward an information 
measure for the type of secondary structures S: 

z(si=s~R,-s, . . 

(5) 

where Z(s, = S&) represents the contribution from 
the kth position to the secondary structure q of 4, 
which ranges over S=cr, /I, coil. The secondary 
structure with the largest information measure was 
assigned to the central amino acid, and the process 
was repeated for each position in the sequence. This 
is a first order mapping. 

(ii) Prediction of secondary structure 

A network with 17 input groups having 21 units 
per group, 40 hidden units and three output units 
was trained on the training set of artificial 
structures. The learning curves shown in Figure 3 
rose quickly for both the training set and a testing 
set of artificial structures. The learning algorithm is 
capable of discovering the “rules” that were used to 
generate the artificial structures and to predict with 
high accuracy the secondary structure of “novel” 
artificial structures that were not in the training 
set. Similar results were obtained when a network 
with one layer of weights and a local coding scheme 
was used. This was expected since, by construction, 
there were only first order features in the data. 

The central amino acid has the largest influence 
on the secondary structure in the artificial struc- 
tures, based on Robson’s information tables. This 
should be reflected in the sizes of the weights from 
the input groups. The average magnitude of the 
weights from each input group is plotted in Figure 4 
for a network at different stages of training. The 
average magnitude of the weights generally 
increased with time, but those at the centre more 
quickly than those near the ends of the window. 

(iii) Effects of noise in the data 

The long-range effects on the secondary structure 
would effectively add noise to the short-range 
effects that could be captured in a short window. In 
an effort to mimic these effects, we generated a new 
set, of artificial structures that included a 30% 
random component to the rules used above. The 
networks with 40 hidden units and a local coding 

0 5 IO 15 20 

Residues tromed (X103) 

Figure 3. Learning curves for artificial structures. The 
percentage of correct predicted secondary structure is 
plotted as a function of the number of amino acids 
presented during training for both the training and 
testing sets. 
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Figure 4. Values of the average magnitude of the 
weights from each weight group shown at several times 
during training on artificial structures. The lowest curve 
represents the averaged weights early in training. 

scheme trained on proteins with 30% noise were 
able to learn the training, though not as well as the 
training set without noise, as shown in Figure 5. 
The performance on the testing set reached 63%, 
close to the theoretical limit of 70%. When a 
network with one layer of weights and a local 
coding scheme was used, both learning and training 
performances were about 63 %. This indicates that 
the learning algorithm can extract 90% (63/70) of 
all the first order features. The noise had an 
interesting effect on the weights, as shown in 
Figure 6. The central weights were larger in 
magnitude, as before, but now even the weights 
from the end groups continue to increase with time. 
The ratio of the average magnitude of weights from 
the central group to the average magnitude of 
weights from the end groups was much smaller 
when noise was added to the training set. 

(iv) Effects of irrelevant weights 

Networks were trained having either 17 input 
groups or 21 input groups, but the secondary 

/ 
I 

50 , I I I I 1 I 
0 20 40 60 00 100 120 140 160 

Resldues trolned (X 103) 

Figure 5. Learning curve for artificial structures with 
30% noise added to the secondary structures. The 
percentage of correctly predicted secondary structures is 
plotted as a function of the ‘number of amino acids 
presented during training for both the training and 
testing sets. 

0.141 1 ; ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 
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Figure 6. Values of the average magnitude of the 
weights from each weight group shown at several times 
during training on artificial structures with 30% noise 
added to the secondary structures. The lowest curve 
represents the averaged weights early in training. 

structures were generated from a group of size 17. 
The larger network was trained to determine the 
effect of the extra weights to inputs that could not 
contain any information about the secondary 
structure. The success rate of the network with 21 
input groups was consistently lower than the 
network with 17 groups by about 1 to 2%. Thus, 
irrelevant weights can interfere with the perform- 
ance of the network. The time evolution of the 
weights was different in the network with 21 input 
groups for the weights outside the middle window 
of 17 input groups. These weights fluctuated around 
0.15, close to their initial, randomly generated 
values, compared with weights in the central groups 
that tended to increase with time. 

(v) Second order arti$cial structures 

The first order common features of artificial 
structures were learned very quickly by a network 
with one layer of weights. We generated a new set 
of artificial structures with both first order and 
second order features to determine how well a 
network with hidden units could learn the higher 
order common features. 

The second order contribution of the residue at 
4 + j to the secondary structure of the residue at & 
depends jointly on the identity of both residues. We 
generalized the first order information measure 
given by Garnier et al. (1978) given in equation (5) 
to include this second order contribution: 

Z(Si =S(zi-*, . . .z$, . . z$+s) 

= jis Z(+=SIRI, R,+j) + &, (6) 

where B, are constant biases used to match the 
relative proportion of secondary structures (S = LX, 
8, coil), to those of real proteins (B,=O, BP = -55, 
BCoi, = 150), and: 

Z(Si = SI&, R,+j) = z(Si = SIR,+j) + A(S3 4, &+j> j), 
(7) 
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where A(LS,&,&+~, j) for each possible combination 
of (LS’,&,&+~, j) is a random (but fixed) number 
taken from a uniform distribution in the range 
[-- a, al. The magnitude of a determines the 
amount of second order features added into the 
original first order features. We chose a = 100 to 
match the fraction of first order features observed 
in real proteins. 

When the local coding scheme for the inputs was 
used to train a network with one layer of modifiable 
weights (first order perceptron), the maximum 
testing success rate was 63%. This represents the 
amount of structure that can be predicted solely 
from the first order features. When a network with 
80 hidden units and the same input coding scheme 
was used, the learning was much slower and the 
success rate was 65% and climbing very slowly 
after 70,000 training examples. 

Improved performance was obtained using a 
second order conjunctive coding scheme for the 
inputs as described in Methods. This coding scheme 
makes it possible for a network with only one layer 
of weights to have access to second order features 
for the inputs. When such a network was trained on 
the artificial second order structures, the learning 
was much faster and the testing success rate was 
85~~. The dependence of the asymptotic success 
rate on the size of the training set is shown in 
Figure 7. 

(b) Real proteins 

(i) Testing with non-homologous proteins 

We trained st,andard networks (13 input groups, 
local coding scheme, and 3 output units) with either 
0 or 40 hidden units. The learning curves for the 
training and testing sets are shown in Figure 8. In 
all cases, the percentage of correctly predicted 
structures for both the training and testing sets rose 
quickly from the chance level of 33% to around 
60 %. Further training improved the performance 
of the networks with hidden units on the training 
set, but performance on the testing set did not 
improve but tended to decrease. This behaviour is 
an indication that memorization of the details of 

Residues m troinmg set ( x 10’1 

Figure 7. Dependence of the success rate for 2nd order 
artificial structures as a function of the training set size. 
The input encoding was a 2nd order conjunctive scheme. 

55’ 
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I 
200 

Figure 8. Learning curves for real proteins with testing 
on non-homologous proteins. Results for 2 networks are 
shown, one with no hidden units (direct connectlions 
between input and output units) and another with 40 
hidden units. The percentage of correctly predicted 
secondary structure is plotted as a function of the 
number of amino acids presented during training. 

the training set is interfering with the ability of the 
network to generalize. The peak performance for a 
network with 40 hidden units was Q3 = 62.796, 
with the corresponding C, = O-35, C, = 0.29 and 
c coil = O-38. The performance with no hidden units 
is similar, as shown in Figure 8 and indicated in 
section (b) (iii), below. 

The values of the weights for the network with no 
hidden units are given in Tables 13, 14 and 15 in the 
Appendix, and a graphical representation of these 
weights, called a Hinton diagram, is shown in 
Figure 9. The relative contribution to the secondary 
structure made by each amino acid at each position 
is apparent in this diagram. Physical properties of 
the amino acids can be correlated with their 
contributions to each form of secondary structure; 
in this way, hypotheses can be. generat,ed 
concerning the physical basis for secondary 
structure formation (see Fig. 9). 

(ii) Change of the weights in the network 
during training 

The average magnitude of the weights from each 
input group is plotted as a function of the input 
group and of time in Figure 10. The network had 17 
input groups and 40 hidden units. The weights are 
largest in the centre and are approximately 
symmetric around the centre group. Over time, 
both the central peak and the flanks increase in 
size. This behaviour is similar to the previous 
experiments on artificial structures to which noise 
had been added to the data (Fig. 6) but unlike the 
behaviour of the weights when noise was not 
present (Fig. 4). This suggests that the weights from 
groups more than about eight residues from the 
central amino acid may not contribute information 
to the prediction of the secondary structure, even 
though the weights to these distant groups are large 
and increase with time during training. This 
conjecture was tested by varying the number of 
input groups and the results are reported below. 
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Figure 10. Values of the average magnitude of the 
weights from each weight group shown at several times 
during training on real proteins. The lowest curve 
represents the average magnitudes of the weights early in 
training. 

Based on the observations with artificial struc- 
tures that small randomly fluctuating weights were 
useless and could even interfere with the perform- 
ance of the network, we systematically pruned 
small weights in one experiment. In a network with 
17 input groups, 40 hidden units and 1 output 
group, we set all of the weights smaller than 0.15 to 
zero after every 12,000 amino acids were presented 
during training. We found that at the end of 
training, 60% of the weights were zero and the 
performance was slightly improved. 

These results suggest that the common features 
in the training and testing proteins are all first 
order features and that all of the first order features 
learned from the training set that we used were 
common features. The higher order features (the 
information due to interactions between 2 or more 
residues) learned by the network were specific to 
each individual protein, at least for t!he proteins 
that were used. In a later section, we show that if 
the training set is too small then not all the first 
order features learned during training are common 
features. 

(iii) Dependence on the number of (iv) Dependence on the number of 
hidden units input groups 

Table 7 shows the surprising result that the peak 
performance on the testing set was almost 
independent of the number of hidden units 
although the learning rates of the training set (not 
shown) became slower as the number of hidden 
units decreased. Even more surprising, the testing 
success rate of a network with no hidden units was 
about the same as one with 40 hidden units, as 
shown in Figure 8. Furthermore, the training and 

We studied the dependence of testing success rate 
on the size of the input window using a standard 
network with 40 hidden units. The results shown in 
Table 8 indicate that when the size of the window 
was small the performance on the testing set was 
reduced, probably because information outside the 
window is not available for the prediction of the 
secondary structure. When the size of the window 
was increased, the performance reached a maximum 
at around 13 groups (6 on either size of the centre 
residue). For larger window sizes, the performance 
deteriorated, probably for the reason given in 
section (a) (iv), above. Similar results were obtained 
for networks without hidden units. 

Table 7 
Dependence of testing success rate on hidden units 

Hidden units &a(%) 

0 62.5 
3 62.5 
5 61.6 
7 62.2 

I 0 61.5 
15 62.6 
20 62.3 
30 62.5 
40 62.7 
60 61.4 

Dependence of the performance of the non-homologous testing 
set, on the number of hidden units. 

Table 8 
Dependence of testing success rate on window size 

Window size Qli(“/o) MC WC) MG:,,i, 

21 61.6 0.33 0.27 0.32 
17 61.5 0.33 0.27 0.37 
15 62.2 0.35 0.31 0.38 
13 62.7 0.35 0.29 0.38 
11 62.1 0.36 0.29 0.38 
9 62.3 0.33 0.28 0.38 
7 61.9 0.32 0.28 0.39 
5 60.5 0.28 0.26 0.37 
3 57.7 0.22 0.20 0.30 
1 53.9 0.11 0.14 0.17 

Dependence of the performance of the non-homologous testing 
set on number of input groups. MC,, MC@ and MC,,,, are the 
maximum correlation coefficients during training, which may 
occur at different stages. 

testing performances of the network with no hidden 
units were indistinguishable. 

(v) Dependence on size of the training set 

A standard network with 13 input groups and no 
hidden units was trained on training sets with 
different numbers of amino acids in them. The 
maximum performance of the network as a function 
of the training set size is presented in Figure 11. 
The maximum occurred after different training 
times in the different networks. 

The maximum performance on the training set 
decreases with the number of amino acids in the 
training set because more information is being 
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Figure 11. Dependence of the prediction accuracy on 
the size of the training set of non-homologous proteins. 
(a) Percentage correct for the training and testing sets. 
(b) Correlation coefficients for the testing set. 

encoded in a fixed set of weights. The testing 
success rate, on the other hand, increases with size 
because the larger the training set, the better the 
network is able to generalize. When the training set 
is small, the network is able to “memorize” the 
details, but this strategy is not possible when the 
training set is large. Another conclusion from 
Figure 11 is that a further increase of the data set is 
unlikely to improve the performance of the network 
on the testing set. 

(vi) Relative importance of information on the N 
and C-terminal sides 

We trained a network with no hidden units and a 
window size of 13 to predict the secondary structure 
of the amino acid m positions away from the centre. 
There are 13 values of m ranging from -6 to 6, 
where a negative value indicates a position to the 
N-terminal side of centre. The maximum testing 
success rate and maximum correlation coeffcients 
are shown in Figure 12. All curves are approxi- 
mately symmetric around the centre and have 
broad maxima between -3 and + 3. This result is 
consistent with about equal contributions from the 
information in the N-terminal and C-terminal 
sequences. 

6 

Position of predicted residue 
(b) 

Figure 12. Dependence of the prediction accuracy on 
the position ‘within a window of 13 amino acids. The 
position is indicated relative to the centre of the window, 
so that -2 refers to a network that is attempting to 
predict the secondary structure of the amino acid 2 
positions toward the N-terminal from the central residue. 
(a) Success rate as a function of position. (b) Correlation 
coefficients as a function of position. 

(vii) Prediction near the N terminus 

Other methods for predicting the secondary 
structure are more accurate near the N terminus of 
most proteins (Argos et al., 1976). In Table 9 the 
success rate for our method on the 25 amino acid 
N-terminal sequence is compared with the average 
success rate. The performance of our method on this 
segment is significantly higher, consistent with 
previous findings. Our method considers only local 
interactions, which suggests that local interactions 
are more important in determining the secondary 
structure at the N terminus of globular proteins, as 
proposed by other authors. 

(viii) Cascaded networks improve performance 

For a given input sequence, the output of the 
network is a three-dimensional vector whose 
components have values between 0 and 1. The 
secondary structure for the above networks was 
predicted by choosing the output unit with the 
largest value, as mentioned in Methods. However, 
information about the certainty of the prediction is 
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Table 9 
Prediction of a short segment at the N-terminal end 

Segment Qd%) G c, 

1st 20 residues 73.8 0.45 (62) 0.45 (69) 

1st 25 residues 72.2 0.46 (91) 0.45 (84) 
1st 30 residues 68.0 0.41 (117) 0.39 (111) 
1st 40 residues 63.4 0.33 (167) 0.35 (156) 

All but 1st 25 61.3 0.34 (758) 0.27 (664) 

The numbers in parentheses are the numbers of residues in the testing sets. 

Goi, 

0.54 (209) 
0.52 (250) 
0.48 (282) 
0.43 (352) 
0.36 (1675) 

not exploited by this procedure. Neither is the the predictions made by the first and second 
information available in the correlations between networks. The second network “cleans up” the 
neighbouring secondary structure assignments, predictions of the first by joining short fragments of 
since predictions are made one residue at a time. secondary structure and eliminating isolated assign- 
However, we can take advantage of this additional ments. The improvement was mainly in the regions 
information by designing a second network. of a-helix and coil, but not in regions of p-sheet. 

The inputs to the second network were sequences 
of outputs from the first network, trained as 
described above. Hence, the input layer of the 
second network contained 13 groups with three 
units per group, each group representing the 
complete information about the secondary 
structure assignment derived from the first 
network. The first network was fixed while the 
second network was trained on the same set of 
training proteins as the first network. The average 
performance for two cascaded networks was 
Q3 = 64*3%, C,=O*41, C,=O.31 and C,,,=O*41 with 
40 hidden units in both nets. This was our best 
result on the testing set of non-homologous 
proteins. Performance on each of the non-homo- 
logous proteins in the training set is given in 
Table 10. The weights for a second network without 
hidden units (whose input is from the first network 
in Tables 13 to 15) is given in Table 16. 

(ix) Methods that did not improve performance 

We experimented with many variations of the 
basic network, but none of them helped improve 
the performance on the testing set. The following 
methods were of little or no help (less than 1%): 

(ix)(a) Modi$cation of the input representations 

The improvement provided by the second 
network is apparent in Figure 13, which compares 

The local input representation of the amino acids 
we used contains no information about their bio- 
physical properties. We tried using distributed 
coding schemes representing charge, size, hydro- 
phobicities, and other detailed information about 
the conformation of the side groups. In another 
attempt, we used the information measures of 
Robson (Garnier et al., 1978) as part of the input 
representations. A second order conjunctive 
encoding was also used. We experimented with 
varying the input representations during the 
learning without success. 

Table 10 
Results on non-homobgous testing proteins 

protein 

labp 
lacx 
lhmq 
1 ige 
lnxb 

lppd 
1PYP 
2act 
2alp 
2cdv 
2grs 
21hb 
2sbt 

3gpd 
6api 

0.33 0.31 0.23 61 
0.28 0.28 65 

0.46 0.49 72 
0.18 042 0.50 68 

0.49 0.43 71 
0.39 0.24 o-49 66 
0.32 0.34 0.48 73 
0.40 0.36 0.35 64 
0.30 0.32 0.29 57 
0.47 0.25 0.38 71 
0.41 0.30 0.44 64 
0.50 .- 0.58 74 
0.26 0.36 0.34 66 
0.40 0.25 0.45 64 
0.34 0.27 0.32 52 

These physical properties are of known bio- 
physical importance for determining the secondary 
structure. The failure to improve performance does 
not necessarily imply that the network is not 
capable of taking advantage of these properties; an 
alternative interpretation is that the network is 
already extracting all of the relevant information 
available from these properties. The failure of the 
second order conjunctive encoding proves that no 
second order common features about the secondary 
structure are present locally. 

(ix)(b) Modijications to the network architecture 

We examined a number of variations of the 
standard network architecture. We studied net- 
works with up to seven output groups corre- 
sponding to a secondary structure prediction of up 
to seven contiguous amino acids. All sets of output 
for a given amino acid were averaged before making 
a prediction. 

Weighted average 0.41 0.31 0.41 64.3 

Results of a 2-network cascade with 40 hidden units each for 
non-homologous testing set of proteins (Table 2). 

Many networks were studied that had altered 
connectivities: networks with two hidden layers; 
networks with direct connections between the input 
and output layers as well as through a layer of 
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Haemoglobin V (cyano, met) 
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Figure 13. Comparison of the predictions for the secondary structure of haemoglobin V (21hb) and a a-lytic protease 
(2alp). The results are shown for 1 network and 2 cascaded networks. The 2nd network improved on the prediction of 
the 1st network for haemoglobin V, which was rich in a-helix, but slightly decreased the accuracy of the prediction for 
a-lytic protease, which contained a high proportion of b-sheet structure. 

hidden units; recursive networks, in which the 
previous outputs were fed back to serve as extra 
input units. 

Multiplicative synaptic weights were used that 
depended quadratically on pairs of input units. In 
particular, we used multiplicative units to represent 
global variables such as the position of the amino 
acid in the protein and the average hydrophobicity 
of the protein. 

(ix)(c) More detailed secondary structure predictions 

Kabsch & Sander (19836) distinguish three types 
of helices, two types of /I-structures and two types 
of turns, as well as the coil. We attempted to train a 
network on this finer classification scheme first, and 
then to collapse the assignments into the three final 
states. 

(x) Comparison with other methods 

The performance of our method for secondary 
structure prediction is compared with those of 
Robson and co-workers (Garnier et al., 1978), Chou 
& Fasman (1978) and Lim (1974) in Table 11. The 
original measures of accuracy reported by these 
authors were based in part on the same proteins 
from which they derived their methods, and these 
proteins are equivalent to our training set. The 
performance of our networks with hidden units on 
the training set was as high as Q3 = 95% after 
sufficiently long training. However, these methods 
should be compared on proteins with structures 
that were not used in or homologous with those in 
the training set. The results of testing these three 
methods on novel proteins is reported in Table V of 
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Table 11 
C’omparison of methods 

Method QJ(“,,) (: “8 Ccoil 

Kobson .-4 0.3 I 0.24 0.24 
(‘hou -Pastnan 50 0.25 0.19 0.24 
I,ittr *io 0.x 0.1 I 0.20 

Srural I net fi2.i 0.75 1 . 0.29 0.38 
Network 2 nets 64.3 041 0.31 0.41 

(‘omparison with other methods for predicting secondary 
qtructurr on a tlol~-h~lrnologous testing set of proteins (Table 2). 
(j3 is the average H~CW’XY rate on 3 types of secondary structure 
and f :. “P and c:.,, are the corresponding correlation coefficients 
for the a-helix. /I-sheet and coil. respectively. Results are shown 
for a single nrtwork (I net) or a I-network cascade (2 nets). 

Xishikawa (1983) and are listed in Table 11 with 
the performance of our networks on the non- 
homologous testing set of proteins. 

The correlat,ion coefficient introduced by 
Mathews (1!)75) is another measure of the quality of 
a prediction. one that t,akes into account over- 
prediction as well as underprediction. These para- 
meters have been calculated by Nishikawa (1983) 
for previous methods and are listed in Table 11 with 
the correlation coefficients of our method. Our 
predictions are better than all previous methods for 
all secondary structure predictions. Our method has 
a success rate that is an absolute improvement of 
1196 and a relative improvement of 21 o/o over the 
method of Robson et al. (Garnier et al., 197&J), which 
is the most, reliable of other existing methods. The 
correlation coeficients of our method have a 
relative improvement, of 32%, 29% and 41 y. for 
the a-helix, P-sheet and coil, respectively. 

Our training and testing sets of proteins were 
different from those used to construct and test the 
previous methods. To determine how much of our 
improvement was due to this difference, we trained 
a new network using 22 of the 25 proteins found in 
R,obson & Suzuki (1976) as the training set for a 
network. (Three of the proteins were missing from 
our database: carp myoglobin, horse cytochrome c, 
and adel!y!ate c)rclase. Deleting these proteins from 
our trammg set, would decrease slightly the 
performancae of the network, as indicated in 
Fig. Il.) Our testing set, was a subset of those found 
in Table \- of Nishikawa (1983). (The following 10 
testing proteins were in our database: citrate 
synthease. erabutoxin B. prealbumin, y-crystallin 
IT, protease 13. subtilisin inhibitor, phospholipase 
A,, glutathione peroxidase, rhodanese and alcohol 
drhydrogenase.) The t,esting success rate of 
Robson’s method on these ten proteins was 51.2% 
compared with 61.9% for our method with two 
cascaded networks. Thus, less than 1 y. of the 11 y. 
improvement in Table 11 can be attributed to 
differences in the training sets. The relatively small 
effect of the larger database available to use is 
consistent with the asymptotic slope of the 
dependence on training set size shown in Figure 11. 

The improvement of our method over that of 
Robson ef nl. may seem puzzling, since they 

also use one layer of weights. The difference in 
performance can be at,tributed to the observation at 
the end of Methods. section (c), that tirst order 
features are stronger than first order statistics. The 
information measure in Robson’s method depends 
only on the first order statistics. Therefore, exactly 
the same information measures would be obtained 
through the probabilities in Table 5 for t)he two sets 
of mappings shown in Table 4. However. two 
different sets of weights would be obtained bj 
training two first order perceptrons on t,he two 
mappings separately. Thus, neural networks (‘an 
distinguish mappings with same first order statisticas 
but different first order features. 

Levin et ul. (1986) proposed an algorithm for 
determining secondary structures based on 
sequence similarity (We thank one of the referees 
for bringing this paper t’o our attent’ion). In Table 3 
of that paper, they showed that the prediction 
success rate for nine new prot,eins (corresponding to 
our testing proteins) is 63.49/,. However. as pointed 
out’ by these authors. four out of their nine testing 
proteins had homologous counterparts in t’heir 
database (corresponding to our t’raining proteins). 
and these should be treated separately when the 
prediction accuracy of the method is assessed. The 
prediction success rate for these four proteins after 
the corresponding homologous prot,eins are removed 
from the database were given in the legend of their 
Table 3. The recalculated total success rate for the 
nine testing proteins falls to 59*70/,. which is about 
4.6% less than the success rate for our non- 
homologous testing set. However, this c*omparison 
may not be accurate, because the P-sheet content of 
their nine new proteins is about 17O,, while it is 
21’); in our non-homologous testing set. Because 
P-sheet’ is the most difficult part of the structure to 
predict, we expect that the 4.6% improvement, for 
our method is proba,bly an underestimat,c. I\‘e 
cannot conduct a better-controlled (~otnparison. as 
we did with Robson’s m&hod in t h(b last sec*tion, 
because we do not have six of the niw protrins thra~ 

used for t’esting (we used 6 homologous proteins in 
our database to &imate the proportion of the 
B-sheet in their t’&ing proteins shown abovt>). 
Another observation is that our method should I)e 
faster, because a set of weights obtained through 
training can be used for predic%ing sec~ondarv 
st,ruct,ures for all new proteins. The method (if 
Levin et al. (1986). on the other hand, requirfhs an 
exhaust’ive search of the whole database for cverv 
seven-amino acid sequencse in the new pt*otjt3in. 

(xi) Tpsting with‘ homologous protrins 

In all of the experiments described above. the 
testing set) was carefully chosen not to have a,ny 
homology with the prot’eins in the t,raining set’. The 
results were significant,ly different when homologies 
were present, as shown in Figure 14. ilt caomparison 
with the result’s from the non-homologous testing 
set shown in Figure 8. The main differenc*e is that, 
for the network with 40 hidden units, the 
performance on the testing set caontinued to 
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Residues trained (X IO’) 

Figure 14. Learning curves for real proteins with 
testing on homologous proteins using the training and 
testing sets in Table 3. Results for 2 networks are shown, 
one with no hidden units (direct connections between 
input and output units) and another with 40 hidden 

units. The percentage of correctly predicted secondary 
structure is plotted as a function of the number of amino 

acids presented during training. 

improve up to about Q3 =70%, about 10% better 
than the network with’ no hidden units. With two 
cascaded networks, Q3 = 74.4%. The hidden units 
were evidently able to exploit the additional 
information present in the homologous proteins. 

We varied the composition of the training set and 
found that in most, cases the best performance was 
obtained when the training set consisted only of 
proteins that had homologies with the testing 
protein. The results for 12 pairs of homologous 
proteins are shown in Table 12. For each pair of 
homologous proteins pa and h, we trained a 
network on R and tested it on h. The testing 
success rate was almost always between the 
sequence homology and the structure homology. 

However, this is less than the success rate that is 
obtained by aligning the two proteins and assigning 
to the amino acids of h the corresponding 
secondary structures in pa. 

When the sequence homology between pa and p,, 
is below 65%, the testing success rate can often be 
improved by adding other unrelated proteins to the 
training set, but the best result is still not as high as 
the structure homology. 

We attempted to improve on our results for 
homologous proteins by using different input coding 
schemes. None of the coding schemes based on the 
physical properties of amino acids, on Robson’s 
information measures, or on conjunctive encodings, 
were more effective than the simple local coding 
scheme with hidden units. Second order conjunctive 
encoding without hidden units gave results that 
were similar to a network with local input 
and 40 hidden units. 

4. Discussion 

The new method for predicting the secondary 
structure of globular proteins presented here is a 
significant improvement over existing methods for 
non-homologous proteins and should have many 
applications. We have emphasized the distinction 
between training and testing sets, between homo- 
logous and non-homologous testing sets, and the 
balance of the relative amount of each type of 
secondary structure in assessing the accuracy of our 
method, and have provided objective measures of 
performance that can be compared with other 
methods. Tables 13 to 16 in the Appendix contain 
all the information needed to program our method. 

However, the absolute level of performance 
achieved by our method is still disappointingly low. 
Perhaps the most surprising result was the 
conclusion that further improvement in local 

Table 12 
Results on homologous testing proteins 

Homologous pairs 
Test Train 

lazu laza 
11zt 1lZl 
lpfc lfc2 
lppd 2act 
2gch 1 tgs 
lgfl lfr2 
lP2P lbp2 
2ape 2wP 
2rhe lig2 
2sga 3sgb 
3hhb tdhb 
51dh lldx 

Weighted average 

Number of 
residues 

125 
129 
111 
212 
237 

70 
124 
318 
114 
181 
287 
333 

Sequence Structural 
homology( %) homology( %) Qd%) 

69 84 78 
65 96 83 
66 62 63 
54 93 83 
46 87 70 
71 94 99 
83 91 90 
67 80 61 
77 92 77 
65 91 76 
85 91 89 
71 86 68 

68 87 76 

Results of networks with hidden units on homologous proteins. The overall weighted correlation 
ooefficients corresponding to Q3 = 76 y0 were C,=O.70, C,=O.58 and CcO,, =054. The sequence and 
structural homologies, defined as the percentage of identical amino acids or secondary structures 
between 2 proteins, were estimated by manual inspection. 
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methods for predicting the secondary structure of 
non-homologous proteins is unlikely, based on 
known structures. The fact that networks with no 
hidden units performed as well as networks with 
hidden units on the non-homologous training set 
suggests that there are little or no second or higher 
order features locally available in the training set to 
guide the prediction of secondary structure. Could 
this be due to a database of insufficient size or 
failure of the network to detect higher order 
common features? 

Two lines of evidence argue against these possible 
explanations. First, the dependence of the perform- 
ance on the size of the training set suggests that the 
addition of more protein structures to the training 
set will not significantly improve the method for 
non-homologous proteins. Second, we can defini- 
tively conclude that no second order features are 
present in the database from our experiments with 
conjunctive input representations of the amino 
acids (which make 2nd order features available as 
1st order features to the output layer). The use of 
hidden units, which are capable of exploiting higher 
order features in the data, did not improve the 
performance either. Experiments with second order 
artificial structures suggests that our method was 
capable of detecting second order features. All of 
these experiments are consistent with the hypo- 
thesis that little or no information is available in 
the data beyond the first order features that have 
been extracted. 

However, it is still possible that our method may 
not extract all of the information available as first 
order features from the training set. An estimate for 
the maximum obtainable accuracy of local methods 
such as ours can be obtained from our study of 

artificial structures. We stochastically generated 
artificial structures that had only information in 
the first order statistics, as estimated by Garnier et 
al. (1978) from real proteins. The profile of the 
magnitudes of the weights from different input 
groups and the increase in the size of the weights 
was similar to that observed for real proteins, but 
only when 30% noise was added to artificial 
structures. This suggests that a theoretical limit of 
70% can be obtained with local methods, which is 
close to our present performance of 64.3%. The 
pattern recognition method that we used is not 
effective when the information contained in the 
statistics of the training set is global. If further 
statistical analysis of the database of protein 
structures confirms our results, then a significant 
fraction of the local secondary structure depends on 
influences outside the local neighbourhood of an 
amino acid and significant improvements for non- 
homologous proteins would require better methods 
for taking into account these long-range effects. 

The prediction accuracy of networks tested with 
homologous proteins is much better than that for 
non-homologous proteins. Other methods are also 
much better when tested with homologous proteins. 
For a highly homologous testing protein, our best 
results were obtained by training a network solely 
with the homologous protein, but the success rate is 
almost always less than the structure homology. 
This is not surprising, since a single protein contains 
little information about amino acid substitutions 
that do not alter the secondary structure. With a 
much larger database of homologous proteins, it 
should be possible for a network to discover the 
equivalence classes of amino acids in different 
contexts. 
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