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We present a new method for predicting the secondary structure of globular proteins based
on non-linear neural network models. Network models learn from existing protein
structures how to predict the secondary structure of local sequences of amino acids. The
average success rate of our method on a testing set of proteins non-homologous with the
corresponding training set was 64:3%, on three types of secondary structure (a-helix,
B-sheet, and coil), with correlation coefficients of C,=0-41, C;=0-31 and C,;=0-41. These
quality indices are all higher than those of previous methods. The prediction accuracy for
the first 25 residues of the N-terminal sequence was significantly better. We conclude from
computational experiments on real and artificial structures that no method based solely on
local information in the protein sequence is likely to produce significantly better results for
non-homologous proteins. The performance of our method of homologous proteins is much
better than for non-homologous proteins, but is not as good as simply assuming that

homologous sequences have identical structures.

1. Introduction

Most of our knowledge of protein structure comes
from the X-ray diffraction patterns of crystallized
proteins. This method can be very accurate, but
many steps are uncertain and the procedure is time-
consuming. Recent developments in genetic
engineering have vastly increased the number of
known protein sequences. In addition, it is now
possible to selectively alter protein sequences by
site-directed mutagenesis. But to take full
advantage of these techniques it would be helpful if
one could predict the structure of a protein from its
primary sequence of amino acids. The general
problem of predicting the tertiary structure of
folded proteins is unsolved.

Information about the secondary structure of a
protein can be helpful in determining its structural
properties. The best way to predict the structure of
a new protein is to find a homologous protein whose
structure has been determined. Even if only limited
regions of conserved sequences can be found, then
template matching methods are applicable (Taylor,
1986). If no homologous protein with a known
structure is found, existing methods for predicting
secondary structures can be used but are not always
reliable. Three of the most commonly used methods
are those of Robson (Robson & Pain, 1971; Garnier
et al., 1978), of Chou & Fasman (1978), and Lim
(1974). These methods primarily exploit, in
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different ways, the correlations between amino
acids and the local secondary structure. By local,
we mean an influence on the secondary structure of
an amino acid by others that are no more than
about ten residues away. These methods were based
on the protein structures available in the 1970s. The
average success rate of these methods on more
recently determined structures is 50 to 539, on
three types of secondary structure (x-helix, f-sheet,
and coil: Nishikawa, 1983; Kabsch & Sander,
1983a).

In this paper, we have applied a new method for
discovering regular patterns in data that is based
on neural network models. The brain has highly
developed pattern matching abilities and neural
network models are designed to mimic them. This
study was inspired by a previous application of
network ‘learning to the problem of text-to-speech.
In the NETtalk system (Sejnowski & Rosenberg,
1987),"the input to the network is strings of letters
representing words and the output is strings of
phonemes representing the corresponding speech
sounds. Predicting the secondary structure of a
protein is a similar problem, in which the input
symbols analogous to letters are amino acids and
the output symbols analogous to phonemes are the
secondary structures.

The goal of the method introduced here is to use
the available information in the database of known
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protein structures to help predict the secondary
structure of proteins for which no homologous
structures are available. The known structures
implicitly contain information about the bio-
physical properties of amino acids and their
interactions, This approach is not meant to be an
alternative to other methods that have been
developed to study protein folding that take
biophysical properties explicitly into account, such
as the methods of free energy minimization
(Scheraga, 1985) and integration of the dynamical
equations of motion (Karplus, 1985; Levitt, 1983).
Rather, our method provides additional constraints
to reduce the search space for these other methods.
For example, a good prediction for the secondary
structure could be used as the initial conditions for
energy minimization, or as the first step in other
predictive techniques (Webster et al., 1987).

2, Methods
(a) Database

Proteins with known structures were obtained from the
Brookhaven National Laboratory. Secondary structure
assighments based on the atomic co-ordinates were
assigned by the method of Kabsch & Sander (19835). We

selected a representative sample of proteins from the
database that limited the number of almost identical
sequences, such as the similar types of haemoglobin.
Table 1 contains a listing of the 106 proteins that were
used’in"otir’study. A subset of these proteins were taken
out for testing and the remaining proteins used for the
training set. Qur'"results"were "highly "sensitive'to
homologies between proteins in the testing and training
sets, so homologies were exhaustively searched using
diagon plots for all ' pairs’of ‘proteins’(Staden, 1982). One
of our 2 testing sets, listed in Table 2A, had practically no
homologies in"the training set.’(a-Lytic protease in the
testing set has very weak homologies with proteinase A in
the training set but was included in the testing set to
balance the proportion of residues with f-sheet structure.
The inclusion of this protein reduced the overall testing
accuracy, because f-sheet was the most difficult structure
to predict.) A 2nd testing set with homologies is listed in
Table 3A. The 6 proteins in the 2nd testing set had an
average "homology "of 739 Wwith 6 proteins in the
corresponding training set, but little or no homology with
the other training proteins, which were greatly in the
majority. Special care was taken to balance the overall
frequencies of'a-helix, f-sheet and coil'in the training and
testing sets, as shown in Tables 2 and 3. The sequence of
amino acids and secondary structures were concatenated
to form 2 separate long strings for each of the training
and testing sets, with spacers between the proteins to
separate them during training.

Table 1
All proteins used to train and test networks

Code Protein name

1
3
-
™
|

labp 1-Arabinose-binding protein

lacx Actinoxanthin

lapr Acid protease

laza Azurin

lazu Azurin

1bp2 Phospholipase A2

lcac Carbonic anhydrase form ¢
lech Cytochrome c5 (oxidized)

lcer Cytochrome c (rice)

lepv Calcium-binding parvalbumin b
lern Crambin

letx a-Cobratoxin

ley3 Cytochrome ¢3

leye Ferrocytochrome ¢

lecd Haemoglobin (deoxy)

lest Tosyl-elastase

1fc2 Immunoglobulin FC-Frag B complex

1fdh Haemoglobin (deoxy, human fetal)
1fdx Ferredoxin

1fx1 Flavodoxin

lgen Glucagon (pH 6-pH 7 form)

lger y-Crystallin

1gfl Insulin-like growth factor

1gf2 Insulin-like growth factor

lgpl Glutathione peroxidase

thds Haemoglobin (sickle cell)

Lhip High potential iron protein

lhmq haemerythrin (met)

lig2 Immunoglobunlin G1

lige Fe fragment (model)

lins Insulin

1dx Lactate dehydrogenase

11z1 Lysozyme

11zm Lysozyme

11zt Lysozyme, triclinic crystal form
1mbd Myoglobin (deoxy, pH 8-4)

Al 106 18 182

1

1 All 0 47 61

1 All 11 39 274
2 1 13 43 73
1 All 14 34 77

1 All 54 8 61

1 All 18 68 170
1 All 39 0 44

i All 44 0 67

1 All 52 6 50
1 All 19 4 23

1 All 4 16 51

1 All 16 0 102
1 All 35 0 68
1 All 97 0 39
1 All 13 82 145
2 All 36 g1 125
2 All 192 0 96
1 All 5 4 45
1 All 43 32 72
1 All 14 0 15
i All 5 77 92
1 All 20 0 50
1 All 20 4 43
4 1.2 39 29 117
4 1,2 152 0 135
1 All 10 9 66
4 1 73 0 40
2 All 15 186 255
2 1 16 121 185
4 12 22 3 27

1 Al 114 45 170
1 All 39 10 81

1 All 83 14 67

1 All 42 8 79
1 All 113 0 40
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Table 1 (continued )

Code Protein name N n; h e -

Imbs Myoglobin (met) 1 All 111 0 42
1Imlt Melittin 2 1 22 0 4
Inxb Neutrotoxin b 1 All 0 26 36
1p2p Phospholipase A2 1 All 45 6 73
lpfe Fragment of IgG 1 All 4 M 73
Ippd 2-hydroxyethylthiopapain d 1 All 49 36 127
lppt Avian pancreatic polypeptide 1 All 18 0 18
1pyp Inorganic pyrophosphatase 1 All 36 28 217
Irei Immunoglobulin B-J fragment V 2 1 0 51 56
Irhd Rhodanese 1 All 81 32 180
Irn3 Ribonuclease A 1 All 22 43 59
Isn3 Scorpion neurotoxin (variant 3) 1 All 8 12 45
Itim Triose phosphate isomerase 2 i 106 42 99
Itgs Trypsinogen complex 2 All 25 96 161
2act Actinidin (sulphhydryl proteinase) 1 All 56 40 122
2adk Adenylate kinase 1 All 108 22 64
2alp a-Lytic protease 1 All 8 104 86
2ape Acid proteinase, endothiapepsin 1 All 9 102 197
2app Acid proteinase, penicillopepsin 1 All 30 147 146
2b5e Cytochrome b5 (oxidized) 1 All 21 21 43
2cab Carbonic anhydrase form b 1 All 17 77 162
2eey Cytochrome ¢ (prime) 2 1 90 0 37
2edv Cytochrome ¢3 1 All 27 10 70
2eyp Cytochrome ¢ peroxidase 1 All 134 16 143
2dhb Haemoglobin (horse, deoxy) 2 Al 172 0 116
2fd1 Ferredoxin 1 All 0 0 106
2gch y-Chymotrypsin a 3 All 14 78 147
2gnd Gene 5/DNA binding protein 1 All 0 4 83
2grs Glutathione reductase 1 Al 125 86 250
Zich Calcium-binding protein 1 All 47 0 28
2kai Kallikrein a 3 All 17 86 188
2lh} Leghaemoglobin (acetate, met) i All 107 0 46
2lhb Haemoglobin V (cyano, met) 1 Al 100 0 49
2mep Ig Fab mcpe603/phosphocholine 2 All 8 211 224
2mdh Cytoplasmic malate dehydrogenase 2 Al 213 110 327
2mt2 Cd, Zn metallothionein 1 All 0 0 61
2pab Prealbumin (human plasma) 2 1 8 59 47
2rhe Immunoglobulin B-J fragment V-MN 1 All 0 49 65
2sbt Subtilisin novo 2 All 59 38 179
2sga Proteinase A 1 All 12 98 7l
28ns Staphylococcal nuclease complex 1 All 26 28 87
2sod (C'u,Zn superoxide dismutase 4 1 0 58 93
2ssi Streptomyces subtilisin inhibito 1 All 17 26 64
2stv Satellite tobacco necrosis virus 1 All 18 82 84
2taa Taka-amylase a 1 All 99 69 310
2thv Tomato bushy stunt virus 6 125 8 164 321
3c2¢ Cytochrome ¢2 (reduced) 1 Al 44 (] 68
3ena Concanavalin A i All 0 96 141
3fxe Ferredoxin 1 All 7 15 76
3gpd Glyceraldehyde-3-P-dehydrogenase 2 1 85 70 179
3hhb Haemoglobin (deoxy) 2 All 196 0 92
3pey Plastocyanin (Hg?* substituted) 1 All 4 35 60
3pgk Phosphoglycerate kinase complex 1 All 143 46 226
3pgm Phosphoglycerate mutase 1 All 69 15 146
3rp2 Rat mast cell protease 2 1 12 83 129
dsgh Proteinase B 2 All 22 107 107
3tin Thermolysin 1 All 118 52 146
451¢ Cytochrome ¢551 (reduced) 1 All 38 0 44
fets Citrate synthase complex 2 i 223 18 196
4dfr Dihydrofolate reductase 2 1 33 49 17
4fxn Flavodoxin (semiguinone form) 1 All 47 29 62
4sbv Southern bean mosaic virus coat protein 3 1.3 56 142 224
Hate Aspartate carbamoyltransferase 4 1.2 134 62 268
Hepa Carboxypeptidase 1 All 108 50 149
5ldh Lactate dehydrogenase complex 1 Al 124 31 178
Hpti Trypsin inhibitor 1 All 8 14 36
Srxn Rubredoxin (oxidized) 1 All 0 8 16
Gadh Aleohol dehydrogenase complex 2 1 58 72 244
Bapi Modified «-1-antitrypsin 2 Al 109 124 142
Bcat Catalase 2 i 137 77 284

&, total number of subunit chains in the protein; »;, subunit numbers used in this study; &, «-helix;

¢, B-sheet; —, coil.
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Table 2
Proteins in testing and training set 1

Table 3
Proteins in testing and training set 2

A. Testing set proteins with no homology with corresponding
training set

A. Testing set proteins with homology with corresponding
training set

Code Protein name

Code Protein name

labp L-Arabinose-binding protein
lacx Actinoxanthin

lhmq Haemerythrin (met)

lige Fe fragment (model)

Inxb Neurotoxin B

1ppd 2-Hydroxyethylthiopapain d

1pyp Inorganic pyrophosphatase

2act Actinidin (sulphhydryl proteinase)
2alp a-Lytic protease

2edv Cytochrome ¢3

2grs Glutathione reductase

2lhb Haémoglobin V (cyano,met)

2sbt Subtilisin novo

3gpd Glyceraldehyde-3-P-dehydrogenase

Gapi Modified ¢-1-antitrypsin
Total number of residues: 3520

Amino acid fractions

A:0:090 C:0:012 D:0-055 E:0-051 F:0-038
G:0:091 H:0:024 1:0-055 K :0-068 L:0-066
M:0019 N:0:045 P:0-046 Q:0-035 R:0:032
8:0-072 T:0:070 V:0-079 W:0-014 Y :0-033

Secondary structure fractions
h, 0-241 ¢, 0-213 -, 0-547

B. The training set
Training set proteins: proteins in Table 1 minus Table 2A
Total number of residues: 18105

Amino acid fractions

A:0087 C:0015 D:0-056 E:0-048 F:0-038
G:0:086 H:002¢4 1:0-045 K:0-087 L:0-083
M:0:015 N:0-048 P:0-045 Q:0-036 R:0-034
$:0:077 T:0:064 V:0-074 W:0-015 Y :0-035

Secondary structure fractions

h, 0-254 e, 0-201 -, 0-546

(b) Performance measures

There are many ways to assess the performance of a
method for predicting secondary structures. The most
commonly used measure is a simple success rate, or @,
which is the percentage of correctly predicted residues on
all 3 types of secondary structure:

P, [ + P, B + P, coil
=sel "B eoll 1
Q=" M
where N is the total number of predicted residues and P,
is the number of correctly predicted secondary structures
of type a. The correldtion coefficient (Mathews, 1975) is

another useful measure, defined here for the a-helix:

C - (Pa na)_'(ua Oa)
* V) (0 +0,) (%) (Bt0)

where p, is the number of positive cases that were
correctly predicted, n, is the number of negative cases
that were correctly rejected, o, is the number of over-
predicted cases (false positives), and %, is the number of
underpredicted cases (misses). Similar expressions hold
for Cy and C,,;. The @, measure will be used to assay the

(2)

1p2p Phospholipase A2

2ape Acid proteinase, endothiapepsin

2rhe Immunoglobulin B-J fragment V-MN
2sga Proteinase A

3hhb Haemoglobin (deoxy)

5idh Lactate dehydrogenase complex
Total number of residues: 1357

Amino acid fractions

A:0-101  C:0012 D:0-051 E:0-032 F:0-034
G:0:103 H:0026 1:0-041 K :0-047 L:0-091
M:0012 N:0:054 P:0-036 Q:0-033 R:0-021
5:0:096 T:0:070 V:0-084 W:0:012 Y :0:035

Secondary structure fractions
h, 0-292 e, 0-211 -, 0-498

B. The training set
Training set proteins: proteins in Table 1 minus Table 3A
Total number of residues: 20268

Amino acid fractions

A:0087 C:0015 D . 0:056 E:0:049 F.0-038
G:008 H:002¢ 1:0-047 K. 0-068 L:0-080
M:0-016 N:0047 P:0-046 Q:0-036 R:0-034
S:0:075 T :0-064 V:0-074 W:0-015 Y :0:035

Secondary structure fractions
h, 0-249 e, 0-202 -, 0-549

overall success rate of network models during learning,
although it is not as good an indicator as the individual
correlation coefficients.

(c) Neural networks and their properties

The neural network models used in this study are based
on a class of supervised learning algorithms first
developed by Rosenblatt (1959) and Widrow & Hoff
(1960). These are networks of non-linear processing units
that have adjustable connection strengths, or weights
between them, and learning consists in altering the values
of the weights in response to a ‘“teaching” signal that
provides information about the correct classification in
input patterns. In the present study, the teacher was the
secondary structure assignments of Kabsch & Sander
(1983b) based on the Brookhaven databank of protein
structures. In this section, we give a brief introduction to
feedforward neural networks and the back-propagation
learning algorithm used in this study. Further details can
be found in Rumelhart et al. (1986) and Sejnowski &
Rosenberg (1987).

A feedforward network is composed of 2 or more layers
of processing units. The first is the input layer, the last is
the output layer, and all the other layers between are
termed hidden layers. There are feedforward connections
from all the units in one layer to those on the next layer,
as shown in Fig. 1. The strength of the connection from
unit j to unit ¢, called a weight, is represented by a real
number, w;;. The state of each unit, s;, has a real value in
the range between 0 and 1. The states of all the input
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Secondary structure
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Figure 1. A diagram of network architecture. The
standard network had I3"input'groups, with 2]
units/group, representing a stretch of 13 contiguous
amino’acids (only 7 input groups and 7 units/group are
illustrated). Information from the input layer is trans-
formed by an intermediate layer of “hidden” units to
produce a pattern of activity in 3 output units, which
represent the secondary structure prediction for the
central amino acid.

units that form an input vector are determined by an
input window of amino acid residues (typically 13)
through an input coding scheme (see the next section).
Starting from the 1st hidden layer and moving toward
the output layer, the state of each unit ¢ in the network is
determined by:

1

)= 3
14 3)

where the total input E, to unit ¢ is:

E;= X wys;+b; (4)
J
and b; is the bias of the unit, as shown in Fig. 2.

The goal of this network is to carry out a desired
input—output mapping. For our problem, the mapping is
from amino acid sequences to secondary structures (as
explained in detail in the next section). The back-
propagation learning algorithm can be used in networks
with hidden layers to find a set of weights that performs
the correct mapping between sequences and structures.
Starting with an initial set of randomly assigned
numbers, the weights are altered by gradient descent to
minimize the error between the desired and the actual
output vectors.

A network with a single layer of modifiable weights (i.e.
no hidden layers), called a ‘‘perceptron” (Rosenblatt,
1959), has been analysed extensively by Minsky & Papert
(1969). An important concept introduced by them is the
order of a mapping, defined as the smallest number n
such that the mapping can be achieved by a perceptron
whose input have supports equal to or smaller than .
The support of an input unit is the number of elements in
the input array that are encoded by the input unit. For
example, most of our networks use a local coding scheme
in which the input units have a support of 1, since each of
them codes only a single amino acid. We have also used
2nd order conjunctive encodings in which an input unit
encodes combinations of 2 amino acids, and thus has a
support of 2. By definition, if a mapping can be

o o o
H N [+:]
1 T 1

Output F(E)

:.
n
—

0-0| L L
-10 -5 o] 5 10

Input £

Figure 2. The output F(E) of a processing unit as a
function of the sum £ of its inputs.

performed by a perceptron with the support of all of its
input units equal to 1, then the order of this mapping is
1. Minsky & Papert (1969) showed very elegantly that
many interesting mappings are of very high order and
cannot be performed by a perceptron that does not have
any input units with support larger than 1.

For the convenience of deseription, we define nth order
perceptrons as those whose input units have size of
support up to and including #. According to the above
discussion, a lst order perceptron can perform only a
limited part of a higher order mapping correctly. In this
paper, we define the 1st order features of a mapping as
the part of the mapping that can be predicted by any Ist
order perceptron, and the 2nd order features as the
additional part of the mapping that can be performed by
any 2nd order perceptron, and so on. With regard to the
problem of predicting secondary structure of proteins, the
Ist order features are the part of the mapping that can
be predicted by each individual amino acid in the input
window, and the 2nd order features are the part
determined by all pairs of amino acids.

In principle, networks with hidden layers can extract
higher-order features even when all of their input units
have a support of 1. Learning algorithms for networks
with more than one layer of modifiable weights have been
introduced only recently (Ackley ef al., 1985; Rumelhart
et al., 1986). Not all of the information available may be
extractable with a particular learning algorithm. An
example is given in Results, section (a), where the back-
propagation learning algorithm fails to recover a small
amount of the lst order features available to a Ist order
perceptron.

A lst order feature as defined above is stronger than
the 1st order statistics used in standard statistical
treatments. (We thank Dr Richard Durbin for pointing
this out to us.) We illustrate the difference in the
following example. Consider 2 sets of input—output
mappings in Table4. Define P(I,,0) as the joint
probability that the ith (=1, 2, 3, 4) input unit is equal
to I; (=0, 1) and the output unit is equal to 0 (=0, 1).
The joint probabilities are identical for both sets of
mappings as shown in Table 5. Therefore, these 2 sets
have the same 1st order statistics. However, these 2 sets
can be learned by 2 different 1st order perceptrons with
the weights given in Table 6. These 1st order perceptrons,
therefore, have extracted more information than lst
order statistics. This observation will be used to explain
why the neural network method yields better results than
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Table 4
Two sets of mappings with identical first
order statistics

Set 1 Set 2
Input Output Input Output
0o 0 1 o 1 0o o0 1 o 0
0o 0 0 1 0 o 0 o0 1 1
0 1 1 0 0 1 0o 1 0 1
1 0 o0 1 1 o 1 0 1 0

the information theory method of Robson & Suzuki
(1976).

(d) Network design

The network design used in this study is similar to the
NETtalk system (Sejnowski & Rosenberg, 1987). The
network maps sequences of input symbols onto sequences
of output symbols. Here, the input symbols are the 20
amino acids and a special spacer symbol for regions
between proteins; the output symbols correspond to the 3
types of secondary structures: a-helix, f-sheet and coil.

A diagram of the basic network is shown in Fig. 1. The
processing units are arranged in layers, with the input
units shown on the bottom and output units shown at the
top. The units on the input layer have connections to the
units on the intermediate layer of “hidden” units, which
in turn have connections to the units on the output layer.
In networks with a single layer of modifiable weights
(perceptrons), there are no hidden units, in which case the
input units are connected directly to the output layer.

The network is given a contiguous sequence of,
typically, 13 amino acids. The goal of the network is to
correctly predict the secondary structure for the middle
amino acid. The network can be considered a “window”’
with 13 positions that moves through the protein, 1
amino acid at a time.

The input layer is arranged in 13 groups. Each group
has 21 units, each unit representing 1 of the amino acids
(or spacer). For a local encoding of the input sequence, 1
and only 1 input unit in each group, corresponding to the
appropriate amino acid at each position, is given a value
1, and the rest are set to 0. This is called a local coding
scheme, because each unit encodes a single item, in

Table 5
First order statistics for the two mappings in Table 4
P(I, 0=0)
1; Input position 7
1 2 3 4
0 0-5 0-25 0-25 0-25
1 0 0-25 0-25 0-25
P, 0=1)
I In position 7
1 2 3 4
0 0-25 0-5 0-25 0-25
1 0-25 0 0-25 0-25

Table 6
Weights for the two mappings in Table 4

Input position ¢

Set 1 3 4
1 2 —2 1 -1
2 2 2 -1 1

Two sets of weights for the 2 single-layer networks that
perform the mappings in Table 4. The biases of all the units
are 0.

contrast with a distributed coding scheme in which each
unit participates in representing several items. In some
experiments, we used distributed codings in which units
represented biophysical properties of residues, such as
their hydrophobicity. Another coding scheme that we
used was the 2nd order conjunctive encoding, in which
each unit represented a pair of residues, 1 residue from
the middle position and a 2nd residue at another position.
Many more units are needed to represent a string of
amino acids with conjunctive encoding, but this form of
encording makes explicit information about the 2nd order
features.

In the basic network, theoutput group has 3 units,
each representing one of the possible secondary structures
for the centre amino acid. In other versiong, more output
units were used to represent a larger number of possible
secondary structures, or several groups of output units
were used to represent a sequence of secondary
structures. See Results for more details. For a given input
and set of weights, the output of the network will be a set
of numbers between 0 and 1. The secondary structure
chosen was the output unit that had the highest activity
level; this was equivalent to choosing the output unit
that had the least mean-square error with the target
outputs.

Based on the discussions in section (c), above, a
network with a single layer of modifiable weights and
using a local coding scheme for the amino acid sequence is
a 1st order perceptron and so can detect only lst order
features, i.e. the independent contributions of each amino
acid to the secondary structure. However, a network can
extract higher order features, such as correlations
between pairs of amino acids and the secondary
structure, if conjunctive input coding schemes are used to
construct higher-order perceptrons or ‘“hidden” pro-
cessing units are introduced between the input and
output layers.

(e) Network training procedure

Initially, the weights in the network were assigned
randomly with values uniformly distributed in the range
[—0-3, 0-3]. The initial success rate was at chance level,
around 339,. The performance was gradually improved
by changing the weights using the back-propagation
learning algorithm (Rumelhart et al., 1986). During the
training, the output values are compared with the desired
values, and the weights in the network are altered by
gradient descent to minimize the error. Details about our
implementation of the learning procedure can be found in
Sejnowski & Rosenberg (1987). A diffent random position
in the concatenated training sequence of amino acids (see
section (a), above) was chosen as the centre position of
the input window at each training step. The surrounding
amino acids were then used to clamp the input units in
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the window. All the amino acids in the training set were
sampled once before starting again. This random
sampling procedure was adopted to prevent erratic
oscillations in the performance that occurred when the
amino acids were sequentially sampled. The performance
of the network on the testing set was monitored
frequently during training and the set of weights was
kept that achieved the best average success rate on the
testing set. The training time of a network with 13 input
groups and 40 hidden units was approx. 1 h of Ridge 32
time (equivalent to a VAX 780 FPA) per 10,000 residues.

The performance of the network on the training and
testing sets depends on many variables, including the
number of training examples, the number of hidden units,
and the amount of homology between the training and
testing sets. If there are too few training examples, the
network can ‘‘memorize” all of the correct outputs
because of the large capacity of the weights. The resulting
network is accurate on the training set but makes poor
predictions on the testing set. When the number of
training examples is large, the learning procedure finds
common features amongst the examples in the training
set that enable the network to correctly predict the
secondary structure of testing proteins that were not
included in the training set. The ability of a network to
extract higher order features from the training set
depends on the layer of hidden units and the types of
input encoding. A significant amount of information
about homologies between proteins is contained in their
higher-order features (see below).

3. Results
(a) Artificial structures

Before training networks on the database of
known protein structures, we first tested the
method on artificial structures with known input-
output relations. The results of these experiments
helped in interpreting the results of training on real
proteins whose statistics are not known a priori.

(i) Generation of first order artificial structures

Amino acid sequences were chosen either from
real proteins in the training set or generated from
the statistics of those proteins. The first step in the
latter method was to measure the frequency of
occurrence of each amino acid in the database, as
given in Table2. Amino acids were chosen
randomly with the same frequencies and assembled
into a long sequence. Once the primary amino acid
sequences were determined, the secondary struc-
tures were then assigned to each amino acid
according to the information given in Tables 1, 2
and 4 of Garnier et al. (1978), which were based on
the statistics of real proteins. These Tables were
used by Robson and co-workers to predict
secondary structures, but here we used them to
generate artificial secondary structures.

Each amino acid in a window of 17 amino acids,
eight on either side of the central residue,
independently contributed toward an information
measure for the type of secondary structures S:

8
l=SReg B Bag) = 3 Hs=S1Ry),

(5)

where I(s;=S|R,) represents the contribution from
the kth position to the secondary structure s; of R,
which ranges over S=a, f, coil. The secondary
structure with the largest information measure was
assigned to the central amino acid, and the process
was repeated for each position in the sequence. This
is a first order mapping.

(i) Prediction of secondary structure

A network with 17 input groups having 21 units
per group, 40 hidden units and three output units
was trained on the training set of artificial
structures. The learning curves shown in Figure 3
rose quickly for both the training set and a testing
set of artificial structures. The learning algorithm is
capable of discovering the “‘rules” that were used to
generate the artificial structures and to predict with
high accuracy the secondary structure of “novel”
artificial structures that were not in the training
set. Similar results were obtained when a network
with one layer of weights and a local coding scheme
was used. This was expected since, by construction,
there were only first order features in the data.

The central amino acid has the largest influence
on the secondary structure in the artificial struc-
tures, based on Robson’s information tables. This
should be reflected in the sizes of the weights from
the input groups. The average magnitude of the
weights from each input group is plotted in Figure 4
for a network at different stages of training. The
average magnitude of the weights generally
increased with time, but those at the centre more
quickly than those near the ends of the window.

(iil) Effects of noise in the data

The long-range effects on the secondary structure
would effectively add noise to the short-range
effects that could be captured in a short window. In
an effort to mimic these effects, we generated a new
set of artificial structures that included a 309
random component to the rules used above. The
networks with 40 hidden units and a local coding

100

Correct predictions (%)

75 ! i i
0 5 10 15 20
Residues troined (x103)

Figure 3. Learning curves for artificial structures. The
percentage of correct predicted secondary structure is
plotted as a function of the number of amino acids
presented during training for both the training and
testing sets.
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Figure 4. Values of the average magnitude of the
weights from each weight group shown at several times
during training on artificial structures. The lowest curve
represents the averaged weights early in training.

scheme trained on proteins with 309, noise were
able to learn the training, though not as well as the
training set without noise, as shown in Figure 5.
The performance on the testing set reached 639,
close to the theoretical limit of 709,. When a
network with one layer of weights and a local
coding scheme was used, both learning and training
performances were about 639,. This indicates that
the learning algorithm can extract 909, (63/70) of
all the first order features. The noise had an
interesting effect on the weights, as shown in
Figure 6. The central weights were larger in
magnitude, as before, but now even the weights
from the end groups continue to increase with time.
The ratio of the average magnitude of weights from
the central group to the average magnitude of
weights from the end groups was much smaller
when noise was added to the training set.

(iv) Elffects of irrelevant weights

Networks were trained having either 17 input
groups or 21 input groups, but the secondary

70

Correct predictions (%)

50 1 1 L 1 1 1

[0} 20 40 60 80 100 120 140 160
Residues trained (x103)

Figure 5. Learning curve for artificial structures with
309, noise added to the secondary structures. The
percentage of correctly predicted secondary structures is
plotted as a function of the pumber of amino acids
presented during training for both the training and
testing sets.

034
" B
£
& 030+
Q
; -
k]
g 026
©
2 F
c
g o022t
£
o |
=
g o8
<
o.|4 1 L 1 1 | 1 1 1 1 i A 1 1 | 1

1
-8 -6 -4 -2 0 2 4 6 8
Input group position

Figure 6. Values of the average magnitude of the
weights from each weight group shown at several times
during training on artificial structures with 309, noise
added to the secondary structures. The lowest curve
represents the averaged weights early in training.

structures were generated from a group of size 17.
The larger network was trained to determine the
effect of the extra weights to inputs that could not
contain any information about the secondary
structure. The success rate of the network with 21
input groups was consistently lower than the
network with 17 groups by about 1 to 29,. Thus,
irrelevant weights can interfere with the perform-
ance of the network. The time evolution of the
weights was different in the network with 21 input
groups for the weights outside the middle window
of 17 input groups. These weights fluctuated around
0-15, close to their initial, randomly generated
values, compared with weights in the central groups
that tended to increase with time.

(v) Second order artificial structures

The first order common features of artificial
structures were learned very quickly by a network
with one layer of weights. We generated a new set
of artificial structures with both first order and
second order features to determine how well a
network with hidden units could learn the higher
order common features.

The second order contribution of the residue at
R, ; to the secondary structure of the residue at F;
depends jointly on the identity of both residues. We
generalized the first order information measure
given by Garnier et al. (1978) given in equation (5)
to include this second order contribution:

I(s; =8|R_g,... K, .. Ri.g)
8
= . I(s;=S|R;, Ri+j)+Bs’ (6)
=
where Bg are constant biases used to match the
relative proportion of secondary structures (S=ua,
B, coil), to those of real proteins (B,=0, By = —55,
Bcoil = 150), and:

o= SIB, Beo)) = Tloi= SWFew) &+ AS, B Fov ),
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where A(S,R,,R;. ;, j) for each possible combination
of (S,R,R;,;, j) is a random (but fixed) number
taken from a uniform distribution in the range
[—a, a]. The magnitude of a determines the
amount of second order features added into the
original first order features. We chose a = 100 to
match the fraction of first order features observed
in real proteins.

When the local coding scheme for the inputs was
used to train a network with one layer of modifiable
weights (first order perceptron), the maximum
testing success rate was 639,. This represents the
amount of structure that can be predicted solely
from the first order features. When a network with
80 hidden units and the same input coding scheme
was used, the learning was much slower and the
success rate was 659% and climbing very slowly
after 70,000 training examples.

Improved performance was obtained using a
second order conjunctive coding scheme for the
inputs as deseribed in Methods. This coding scheme
makes it possible for a network with only one layer
of weights to have access to second order features
for the inputs. When such a network was trained on
the artificial second order structures, the learning
was much faster and the testing success rate was
859,. The dependence of the asymptotic success
rate on the size of the training set is shown in
Figure 7.

{(b) Real proteins

(i) Testing with non-homologous proteins

We trained standard networks (13 input groups,
local coding scheme, and 3 output units) with either
0 or 40 hidden units. The learning curves for the
training and testing sets are shown in Figure 8. In
all cases, the percentage of correctly predicted
structures for both the training and testing sets rose
quickly from the chance level of 339, to around
609,. Further training improved the performance
of the networks with hidden units on the training
set, but performance on the testing set did not
improve but tended to decrease. This behaviour is
an indication that memorization of the details of
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o

Figure 7. Dependence of the success rate for 2nd order
artificial structures as a function of the training set size.
The input encoding was a 2nd order conjunctive scheme.
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Figure 8. Learning curves for real proteins with testing
on non-homologous proteins. Results for 2 networks are
shown, one with no hidden units (direct connections
between input and output units) and another with 40
hidden units. The percentage of correctly predicted
secondary structure is plotted as a function of the
number of amino acids presented during training.

the training set is interfering with the ability of the
network to generalize. The peak performance for a
network with 40 hidden units was @; = 62-79,
with the corresponding C, = 0-35, C;=0-29 and
C.oiy = 0-38. The performance with no hidden units
is similar, as shown in Figure 8 and indicated in
section (b) (iii), below.

The values of the weights for the network with no
hidden units are given in Tables 13, 14 and 15 in the
Appendix, and a graphical representation of these
weights, called a Hinton diagram, is shown in
Figure 9. The relative contribution to the secondary
structure made by each amino acid at each position
is apparent in this diagram. Physical properties of
the amino acids can be correlated with their
contributions to each form of secondary structure;
in this way, hypotheses can be generated
concerning the physical basis for secondary
structure formation (see Fig. 9).

(i) Change of the weights in the network
during training

The average magnitude of the weights from each
input group is plotted as a function of the input
group and of time in Figure 10. The network had 17
input groups and 40 hidden units. The weights are
largest in the centre and are approximately
symmetric around the centre group. Over time,
both the central peak and the flanks increase in
size. This behaviour is similar to the previous
experiments on artificial structures to which noise
had been added to the data {Fig. 6) but unlike the
behaviour of the weights when noise was not
present (Fig. 4). This suggests that the weights from
groups more than about eight residues from the
central amino acid may not contribute information
to the prediction of the secondary structure, even
though the weights to these distant groups are large
and increase with time during training. This
conjecture was tested by varying the number of
input groups and the results are reported below.
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Figure 10. Values of the average magnitude of the
weights from each weight group shown at several times
during training on real proteins. The lowest curve
represents the average magnitudes of the weights early in
training.

Based on the observations with artificial struc-
tures that small randomly fluctuating weights were
useless and could even interfere with the perform-
ance of the network, we systematically pruned
small weights in one experiment. In a network with
17 input groups, 40 hidden units and 1 output
group, we set all of the weights smaller than 0-15 to
zero after every 12,000 amino acids were presented
during training. We found that at the end of
training, 609 of the weights were zero and the
performance was slightly improved.

(iil) Dependence on the number of
hidden units

Table 7 shows the surprising result that the peak
performance on the testing set was almost
independent of the number of hidden units
although the learning rates of the training set (not
shown) became slower as the number of hidden
units decreased. Even more surprising, the testing
success rate of a network with no hidden units was
about the same as one with 40 hidden units, as
shown in Figure 8. Furthermore, the training and

Table 7

Dependence of testing success rate on hidden units

Hidden units @:(%)
0 62-5
3 62:5
5 61-6
7 62-2

10 61-5
15 626
20 62-3
30 625
40 62-7
60 614

Dependence of the performance of the non-homologous testing
set on the number of hidden units.

Table 8

Dependence of testing success rate on window size
Window size Q:(%) MC, MG, MC,,,
21 61-6 0-33 0-27 0-32
17 61-5 0-33 0-27 0-37
15 62-2 0-35 0-31 0-38
13 627 0-35 0-29 0-38
11 62-1 0-36 0-29 0-38
9 62-3 0-33 0-28 0-38
7 61-9 0-32 0-28 0-39
5 60-5 0-28 0-26 0-37
3 577 0-22 0-20 0-30
1 53-9 0-11 0-14 0-17

Dependence of the performance of the non-homologous testing
set on number of input groups. MC,, MC; and MCy are the
maximum correlation coefficients during training, which may
occur at different stages.

testing performances of the network with no hidden
units were indistinguishable.

These results suggest that the common features
in the training and testing proteins are all first
order features and that all of the first order features
learned from the training set that we used were
common features. The higher order features (the
information due to interactions between 2 or more
residues) learned by the network were specific to
each individual protein, at least for the proteins
that were used. In a later section, we show that if
the training set is too small then not all the first
order features learned during training are common
features.

(iv) Dependence on the number of
mnput groups

We studied the dependence of testing success rate
on the size of the input window using a standard
network with 40 hidden units. The results shown in
Table 8 indicate that when the size of the window
was small the performance on the testing set was
reduced, probably because information outside the
window is not available for the prediction of the
secondary structure. When the size of the window
was increased, the performance reached a maximum
at around 13 groups (6 on either size of the centre
residue). For larger window sizes, the performance
deteriorated, probably for the reason given in
section (a) (iv), above. Similar results were obtained
for networks without hidden units.

(v) Dependence on size of the training set

A standard network with 13 input groups and no
hidden units was trained on training sets with
different numbers of amino acids in them. The
maximum performance of the network as a function
of the training set size is presented in Figure 11.
The maximum occurred after different training
times in the different networks.

The maximum performance on the training set
decreases with the number of amino acids in the
training set because more information is being
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Figure 11. Dependence of the prediction accuracy on
the size of the training set of non-homologous proteins.
(a) Percentage correct for the training and testing sets.
(b) Correlation coefficients for the testing set.

e

encoded in a fixed set of weights. The testing
success rate, on the other hand, increases with size
because the larger the training set, the better the
network is able to generalize. When the training set
is small, the network is able to ‘“memorize”’ the
details, but this strategy is not possible when the
training set is large. Another conclusion from
Figure 11 is that a further increase of the data set is
unlikely to improve the performance of the network
on the testing set.

(vi) Relative importance of information on the N
and C-terminal sides

We trained a network with no hidden units and a
window size of 13 to predict the secondary structure
of the amino acid m positions away from the centre.
There are 13 values of m ranging from —6 to 6,
where a negative value indicates a position to the
N-terminal side of centre. The maximum testing
success rate and maximum correlation coefficients
are shown in Figure 12. All curves are approxi-
mately symmetric around the centre and have
broad maxima between —3 and +3. This result is
consistent with about equal contributions from the
information in the N-terminal and C-terminal
sequences.

Correct predictions (%)

55 L [l L 1 1
-6 -4 -2 o] 2 49 6
Position of predicted residue

(o)

045

Coil
0-40

035

coefficients

Correlation

015 1 1 L | I
- -4 -2 0 2 4 6

Position of predicted residue
{b)

Figure 12. Dependence of the prediction accuracy on
the position within a window of 13 amino acids. The
position is indicated relative to the centre of the window,
so that —2 refers to a network that is attempting to
predict the secondary structure of the amino acid 2
positions toward the N-terminal from the central residue.
(a) Success rate as a function of position. (b) Correlation
coefficients as a function of position.

(vii) Prediction near the N terminus

Other methods for predicting the secondary
structure are more accurate near the N terminus of
most proteins (Argos et al., 1976). In Table 9 the
success rate for our method on the 25 amino acid
N-terminal sequence is compared with the average
success rate. The performance of our method on this
segment is significantly higher, consistent with
previous findings. Our method considers only local
interactions, which suggests that local interactions
are more important in determining the secondary
structure at the N terminus of globular proteins, as
proposed by other authors.

(viii) Cascaded networks improve performance

For a given input sequence, the output of the
network is a three-dimensional vector whose
components have values between (¢ and 1. The
secondary stracture for the above networks was
predicted by choosing the output unit with the
largest value, as mentioned in Methods. However,
information about the certainty of the prediction is
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Table 9
Prediction of a short segment at the N-terminal end

Segment @(%) G Cp Ceoit

1st 20 residues 73-8 0-45 (62) 0-45 (69) 0-54 (209)
1st 25 residues 72:2 0-46 (91) 0-45 (84) 0-52 (250)
1st 30 residues 680 041 (117) 039 (111) 0-48 (282)
1st 40 residues 634 0-33 (167) 0-35 (156) 0-43 (352)
All but 1st 25 613 0-34 (758) 0-27 (664) 0-36 (1675)

The numbers in parentheses are the numbers of residues in the testing sets.

not exploited by this procedure. Neither is the
information available in the correlations between
secondary
since predictions are made one residue at a time.
However, we can take advantage of this additional
information by designing a second network.

neighbouring

the predictions made by the first and second
networks. The second network “cleans up” the

structure assignments,  predictions of the first by joining short fragments of

The inputs to the second network were sequences

of outputs from the first network, trained as
described above. Hence, the input layer of the
second network contained 13 groups with three
units per group, each group representing the
complete information

network. The first network was fixed while the
second network was trained on the same set of
training proteins as the first network. The average
cascaded networks was
@5 = 64:3%, C,=0-41, C;=0-31 and C,;;=0-41 with
40 hidden units in both nets. This was our best
result on the testing set of non-homologous
proteins. Performance on each of the non-homo-
logous proteins in the training set is given in
Table 10. The weights for a second network without
hidden units (whose input is from the first network
in Tables 13 to 15) is given in Table 16.

The improvement provided by the second
network is apparent in Figure 13, which compares

performance for

two

(ix) Methods that did not improve performance

We experimented with many variations of the
basic network, but none of them helped improve
the performance on the testing set. The following

secondary structure and eliminating isolated assign-
ments. The improvement was mainly in the regions
of a-helix and coil, but not in regions of §-sheet.

about the secondary  methods were of little or no help (less than 19):
structure assignment derived from the first

(ix)(a) Modification of the input representations

The local input representation of the amino acids
we used contains no information about their bio-
physical properties. We tried using distributed
coding schemes representing charge, size, hydro-
phobicities, and other detailed information about
the conformation of the side groups. In another
attempt, we used the information measures of
Robson (Garnier et al., 1978) as part of the input
representations. A second
encoding was also used. We experimented with
varying the input representations during the
learning without success.

These physical properties are of known bio-

order

conjunctive

physical importance for determining the secondary
structure. The failure to improve performance does

Table 10 not necessarily imply that the network is not
Results on non-homologous testing proteins capable of taking advantage of these properties; an
alternative interpretation is that the network is
Protein c, G Ceoi @:(%) already extracting all of the relevant information
available from these properties. The failure of the
i:‘g}: 0;_373 gg; ggg 2; second order conjunctive encoding proves that no
1hmg 0-46 — 0-49 72 second order common features about the secondary
lige 0-18 0-42 0-50 68 structure are present locally.
Inxb — 0-49 0-43 71
ippd g'gg g'gi 0’42 66 (ix)(b) Modifications to the network architecture
2§cy§’ 0-40 0-36 8.35 (Zi We examined a number of variations of the
2alp 0-30 0-32 0-29 57 standard network architecture. We studied net-
Zedv 0-47 0-25 0-38 71 works with up to seven output groups corre-
gﬁfﬁ gg(l) 0-30 g;‘; g‘: sponding to a secondary structure prediction of up
28bt 0-26 0-36 0-34 6 to seven contiguous amino acids. All sets of output
3gpd 0-40 0-25 0-45 64 for a given amino acid were averaged before making
6api 0-34 0-27 0-32 52 a predict,ion,
Weighted average 0-41 031 041 643 Many networks were studied that had altered

Results of a 2-network cascade with 40 hidden units each for
non-homologous testing set of proteins (Table 2).

connectivities: networks with two hidden layers;
networks with direct connections between the input
and output layers as well as through a layer of
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a-Lytic protease
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Haemoglobin V (cyano, met)
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Figure 13. Comparison of the predictions for the secondary structure of haemoglobin V (21hb) and a a-lytic protease
(2alp). The results are shown for 1 network and 2 cascaded networks. The 2nd network improved on the prediction of
the 1st network for haemoglobin V, which was rich in a-helix, but slightly decreased the accuracy of the prediction for
a-lytic protease, which contained a high proportion of f-sheet structure.

hidden units; recursive networks, in which the
previous outputs were fed back to serve as extra
input units.

Multiplicative synaptic weights were used that
depended quadratically on pairs of input units. In
particular, we used multiplicative units to represent
global variables such as the position of the amino
acid in the protein and the average hydrophobicity
of the protein.

(ix)(c) More detailed secondary structure predictions

Kabsch & Sander (1983b) distinguish three types
of helices, two types of B-structures and two types
of turns, as well as the coil. We attempted to train a
network on this finer classification scheme first, and
then to collapse the assignments into the three final
states.

(x) Comparison with other methods

The performance of our method for secondary
structure prediction is compared with those of
Robson and co-workers (Garnier et al., 1978), Chou
& Fasman (1978) and Lim (1974) in Table 11. The
original measures of accuracy reported by these
authors were based in part on the same proteins
from which they derived their methods, and these
proteins are equivalent to our training set. The
performance of our networks with hidden units on
the training set was as high as @;=959 after
sufficiently long training. However, these methods
should be compared on proteins with structures
that were not used in or homologous with those in
the training set. The results of testing these three
methods on novel proteins is reported in Table V of
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Table 11
Comparison of methods
Method @ (%) (88 Cy Ceoit
Robson 53 0-31 0-24 0-24
(‘hou--Fasman K0 025 0-19 0-24
Lim 50 035 0-21 0-20
Neural I net 627 0-35 0-29 0-38
Network 2 nets 64-3 0-41 0-31 0-41

Comparison with other methods for predicting secondary
structure on a non-homologous testing set of proteins (Table 2).
()5 is the average success rate on 3 types of secondary structure
and (7, )y and (', are the corresponding correlation coefficients
for the a-helix. fi-sheet and coil. respectively. Results are shown
for a single network (1 net) or a 2-network cascade (2 nets).

Nishikawa (1983) and are listed in Table 11 with
the performance of our networks on the non-
homologous testing set of proteins.

The correlation  coefficient  introduced by
Mathews (1975) is another measure of the quality of
a prediction, one that takes into account over-
prediction as well as underprediction. These para-
meters have been calculated by Nishikawa (1983)
for previous methods and are listed in Table 11 with
the correlation coefficients of our method. Our
predictions are better than all previous methods for
all secondary structure predictions. Our method has
a success rate that is an absolute improvement of
119, and a relative improvement of 219, over the
method of Robson ef al. (Garnier et al., 1978), which
is the most reliable of other existing methods. The
correlation coefficients of our method have a
relative improvement of 329, 299 and 419, for
the a-helix, f-sheet and coil, respectively.

Our training and testing sets of proteins were
different from those used to construct and test the
previous methods. To determine how much of our
improvement was due to this difference, we trained
a new network using 22 of the 25 proteins found in
Robson & Suzuki (1976) as the training set for a
network. (Three of the proteins were missing from
our database: carp myoglobin, horse cytochrome e,
and adenylate cvclase. Deleting these proteins from
our training set would decrease slightly the
performance of the network, as indicated in
Fig. 11.) Our testing set was a subset of those found
in Table V of Nishikawa (1983). (The following 10
testing proteins were in our database: citrate
synthease, erabutoxin B, prealbumin, y-crystallin
IT, protease B. subtilisin inhibitor, phospholipase
A,, glutathione peroxidase, rhodanese and alcohol
dehydrogenase.) The testing success rate of
Robson’s method on these ten proteins was 51-29
compared with 61-99 for our method with two
cascaded networks. Thus, less than 19, of the 119,
improvement in Table 11 can be attributed to
differences in the training sets. The relatively small
effect of the larger database available to use is
congistent  with the asymptotic slope of the
dependence on training set size shown in Figure 11.

The improvement of our method over that of
Robson et al. may seem puzzling, since they

also use one layer of weights. The difference in
performance can be attributed to the observation at
the end of Methods, section (¢), that first order
features are stronger than first order statistics. The
information measure in Robson’s method depends
only on the first order statistics. Therefore. exactly
the same information measures would be obtained
through the probabilities in Table 5 for the two sets
of mappings shown in Table4. However. two
different sets of weights would be obtained by
training two first order perceptrons on the two
mappings separately. Thus, neural networks can
distinguish mappings with same first order statistics
but different first order features.

Levin et al. (1986) proposed an algorithm for
determining secondary structures based on
sequence similarity (We thank one of the referees
for bringing this paper to our attention). In Table 3
of that paper, they showed that the prediction
success rate for nine new proteins (corresponding to
our testing proteins) is 63-49%,. However, as pointed
out by these authors, four out of their nine testing
proteins had homologous counterparts in their
database (corresponding to our training proteins),
and these should be treated separately when the
prediction accuracy of the method is assessed. The
prediction success rate for these four proteins after
the corresponding homologous proteins are removed
from the database were given in the legend of their
Table 3. The recalculated total success rate for the
nine testing proteins falls to 59-79;, which is about
469, less than the success rate for our non-
homologous testing set. However, this comparison
may not be accurate, because the fi-sheet content of
their nine new proteins is about 179, while it is
219% in our non-homologous testing set. Because
B-sheet is the most difficult part of the structure to
predict, we expect that the 4-69 improvement. tor
our method is probably an underestimate. We
cannot conduct a better-controlled comparison, as
we did with Robson’s method in the last section,
because we do not have six of the nine proteins they
used for testing (we used 6 homologous proteins in
our database to estimate the proportion of the
B-sheet in their testing proteins shown above).
Another observation is that our method should be
faster, because a set of weights obtained through
training can be used for predicting secondary
structures for all new proteins. The method of
Levin et al. (1986). on the other hand. requires an
exhaustive search of the whole database for every
seven-amino acid sequence in the new protein.

(xi) Testing with homologous proteins

In all of the experiments described above. the
testing set was carefully chosen not to have any
homology with the proteins in the training set. The
results were significantly different when homologies
were present, as shown in Figure 14. in comparison
with the results from the non-homologous testing
set shown in Figure 8. The main difference is that,
for the network with 40 hidden units, the
performance on the testing set continued to



880 N. Qian and T. J. Sejnowsks

85
NENA
80[— b NS\ “Train (40)
9 WAV
< Y -
w - YA
g 75 N
2 N
2 N
3 0 AT
& Test (40)
S 651
3 iAo O
60
Test (0)
55 1

o] 50 100 150 200 250 300 350 400
Residues trained (x10%)

Figure 14. Learning curves for real proteins with
testing on homologous proteins using the training and
testing sets in Table 3. Results for 2 networks are shown,
one with no hidden units (direct connections between
input and output units) and another with 40 hidden
units. The percentage of correctly predicted secondary
structure is plotted as a function of the number of amino
acids presented during training.

improve up to about ¢;=709%,, about 109, better
than the network with no hidden units. With two
cascaded networks, @y=74-49,. The hidden units
were evidently able to exploit the additional
information present in the homologous proteins.
We varied the composition of the training set and
found that in most cases the best performance was
obtained when the training set consisted only of
proteins that had homologies with the testing
protein. The results for 12 pairs of homologous
proteins are shown in Table 12. For each pair of
homologous proteins p, and p,, we trained a
network on p, and tested it on p,. The testing
success rate was almost always between the
sequence homology and the structure homology.

However, this is less than the success rate that is
obtained by aligning the two proteins and assigning
to the amino acids of p, the corresponding
secondary structures in p,.

When the sequence homology between p, and p,
is below 659, the testing success rate can often be
improved by adding other unrelated proteins to the
training set, but the best result is still not as high as
the structure homology.

We attempted to improve on our results for
homologous proteins by using different input coding
schemes. None of the coding schemes based on the
physical properties of amino acids, on Robson’s
information measures, or on conjunctive encodings,
were more effective than the simple local coding
scheme with hidden units. Second order conjunctive
encoding without hidden units gave results that
were similar to a network with local input encodinge
and 40 hidden units.

4. Discussion

The new method for predicting the secondary
structure of globular proteins presented here is a
significant improvement over existing methods for
non-homologous proteins and should have many
applications. We have emphasized the distinction
between training and testing sets, between homo-
logous and non-homologous testing sets, and the
balance of the relative amount of each type of
secondary structure in assessing the accuracy of our
method, and have provided objective measures of
performance that can be compared with other
methods. Tables 13 to 16 in the Appendix contain
all the information needed to program our method.

However, the absolute level of performance
achieved by our method is still disappointingly low.
Perhaps the most surprising result was the
conclusion that further improvement in local

Table 12
Results on homologous testing proteins
Homologous pairs Number of Sequence Structural
Test Train residues homology(%) homology(%) (%)
lazu laza 125 69 84 78
11zt Lzl 129 65 96 83
pfe 1fe2 111 66 62 63
1ppd 2act 212 54 93 83
2gch ltgs 237 46 87 70
1gfl 1fr2 70 71 94 99
1p2p 1bp2 124 83 91 90
2ape 2app 318 67 80 61
2rhe lig2 114 77 92 77
2sga 3sgb 181 65 91 76
3hhb 2dhb 287 85 91 89
5ldh 1ldx 333 71 86 68
Weighted average 68 87 76

Results of networks with hidden units on homologous proteins. The overall weighted correlation
coefficients corresponding to @y=769, were C,=0-70, C;=0-58 and C,,;=0-54. The sequence and
structural homologies, defined as the percentage of identical amino acids or secondary structures
between 2 proteins, were estimated by manual inspection.
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methods for predicting the secondary structure of
non-homologous proteins is unlikely, based on
known structures. The fact that networks with no
hidden units performed as well as networks with
hidden units on the non-homologous training set
suggests that there are little or no second or higher
order features locally available in the training set to
guide the prediction of secondary structure. Could
this be due to a database of insufficient size or
failure of the network to detect higher order
common features?

Two lines of evidence argue against these possible
explanations. First, the dependence of the perform-
ance on the size of the training set suggests that the
addition of more protein structures to the training
set will not significantly improve the method for
non-homologous proteins. Second, we can defini-
tively conclude that no second order features are
present in the database from our experiments with
conjunctive input representations of the amino
acids (which make 2nd order features available as
1st order features to the output layer). The use of
hidden units, which are capable of exploiting higher
order features in the data, did not improve the
performance either. Experiments with second order
artificial structures suggests that our method was
capable of detecting second order features. All of
these experiments are consistent with the hypo-
thesis that little or no information is available in
the data beyond the first order features that have
been extracted.

However, it is still possible that our method may
not extract all of the information available as first
order features from the training set. An estimate for
the maximum obtainable accuracy of local methods
such as ours can be obtained from our study of

artificial structures. We stochastically generated
artificial structures that had only information in
the first order statistics, as estimated by Garnier et
al. (1978) from real proteins. The profile of the
magnitudes of the weights from different input
groups and the increase in the size of the weights
was similar to that observed for real proteins, but
only when 309 noise was added to artificial
structures. This suggests that a theoretical limit of
709, can be obtained with local methods, which is
close to our present performance of 64-39;. The
pattern recognition method that we used is not
effective when the information contained in the
statistics of the training set is global. If further
statistical analysis of the database of protein
structures confirms our results, then a significant
fraction of the local secondary structure depends on
influences outside the local neighbourhood of an
amino acid and significant improvements for non-
homologous proteins would require better methods
for taking into account these long-range effects.

The prediction accuracy of networks tested with
homologous proteins is much better than that for
non-homologous proteins. Other methods are also
much better when tested with homologous proteins.
For a highly homologous testing protein, our best
results were obtained by training a network solely
with the homologous protein, but the success rate is
almost always less than the structure homology.
This is not surprising, since a single protein contains
little information about amino acid substitutions
that do not alter the secondary structure. With a
much larger database of homologous proteins, it
should be possible for a network to discover the
equivalence classes of amino acids in different
contexts.
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Appendix one of the amino acids. There are no hidden units in

. . the network, so each weight is for a connection from

The weights in Tables 13 to 15 can be used to one of the 273 input units to one of the three output
units. Note that a separate unit in each group is
dedicated to the spacer (which appears in the

program a network that predicts the secondary
structure for globular proteins. Each row represents
one of the input groups, and each column represents

Table 13
Weights for a-helix

Window position

Amino

acid —6 -3 0 3 6
Ala 0-12 0-26 0-64 0-29 0-68 0-34 0-57 0-33 0-13 0-31 0-21 0-18 —0-08
Cys —0:25 —0-15 0-03 —0-05 —0-15 —0-18 —-0-15 —0-03 —-009 —-026 -012 -029 —-025
Asp 0-01 0-15 0-33 0-11 —-0-02 0-06 —0-46 —0-44 —0-71 —-081 -058 —-032 -0-24
Glu —0-02 0-21 0-51 0-28 0-44 0-20 0-26 0-21 013 —-006 ~-023 --0-25 —0-19
Phe 0-05 0-12 —0:03 0-24 0-06 0-15 0-03 0-48 015 0-10 —0-06 0-05 0-00
Gly -0-02 —0-37 —-0-09 —0-67 —0-73 —0-88 —0-71 —0-46 -039 —-042 —-015 —040 —010
His —0:06 0-10 —0-23 —0-26 —014 —0-09 —0-05 0-27 0-32 0-51 0-37 0-28 0-29
Ile —0-07 —0-03 —0-22 0-00 —0-08 —0-03 0-00 —0-33 000 -0-15 031 —0-03 —0-01
Lys 0-26 0-12 —0-17 —0-19 0-03 —0-11 0-16 0-23 0-37 0-47 0-28 041 0-45
Leu 005 —0-02 0-41 0-47 0-61 0-20 0-48 0-57 0-50 0-56 0-70 0-62 0-28
Met 0-00 0-00 0-13 0-27 0-39 0-43 0-41 0-79 0-63 0-58 0-61 0-21 0-11
Asn -0-10 —003 0-09 —0-04 —0-09 —0-33 —0-36 -0-19 —-007 —-010 —-0-04 —003 -0-08
Pro —0-19 —0-08 —0-43 —0-34 —0-76 —0-81 —-1-12 —1-86 —-1-40 —1-33 —103 —-0-84¢ 042
Gln -0-03 —0-13 —0-23 0-26 —0-15 0-01 0-15 0-19 0-12 0-41 013 —0-27 —-0-28
Arg 0-04 —0-14 —0-10 —0-03 —0-22 0-22 0-23 0-10 0-08 0-18 0-07 0-21 0-056
Ser —-0-19 0-01 —0-10 —0-17 —0-26 -0-35 —0-47 —0-23 —0-28 —049 —-0-28 —005 0-07
Thr —0-:04 —-0-34 —-0-07 —0-20 —0-10 —0-37 —0-54 —033 -0-21 —044 —-025 —0-16 -0-33
Val —0-03 0-02 —0-01 —-0-01 0-12 0-13 0-31 0-24 017  -0-01 0-00 006 —0-13
Trp —0:06 —0-01 -0-02 0-25 0-20 0-07 —-0-10 015 0-02 0-14 0-21 0-32 0-36
Tyr —-0-14 —0-29 —0-38 —0-30 —0-04 —0-31 —0-35 —0:19 —-0-10 —0-08 0-16 011 0-00

=012 015 —0-52 —0-58 —0-64 —-0-37 —-0-03 —0-47 —-077 —066 —056 —0-22 0-24

Tables 13 to 15 show weights for a Ist network without hidden units that predicts secondary structure. Sequences of 13 amino acids
are inputs and the structure of the centre residue is the output. The biases for the output units are —1-08 for a-helix — 1-50 for f-sheet
and 0-41 for coil.

Table 14
Weights for B-sheet

Window position

Amino

acid -6 -3 0 3 6
Ala —-0-18 —0-01 —0-19 —0-14 —0-31 -0-10 —025 —-0-26 005 —044 —-031 —-0-02 -0-06
Cys —0:26 —0-27 —0-29 -0-64 —0-06 0-13 0:13 0-47 0-36 013 —011 —-0-02 —-0-19
Asp 0-05 —0-09 —0-06 —0-10 —0-54 —0-89 —1-01 —0-55 -0-11 —-0-20 0-13 0-11 0-24
Glu —0-06 0-09 —-0-10 —0-39 —0-52 —0-34 —0-62 —0:75 —-0:36 —-0-28 —0-05 010 —0-04
Phe —-0-18 —0-12 —0-32 0-08 0-24 0-36 0-48 0-20 020 —-0-13 —0-04 —-003 —-033
Gly 0-23 0-13 0-19 0-46 0-37 —0-45 —-0-72 —0-56 0-14 0-08 0-45 0-38 0-17
His 0-24 0-22 —0-16 -—0-04 —0-32 —0-34 —0-16 —0-04 0-02 0-09 —0-06 —0-09 0-19
Tle -042 —-027 —0-08 0-16 0-57 0-95 1-10 0-94 047 —004 —-025 —048 -—0-20
Lys 0-03 0-08 —~0-09 0-04 —0-29 —0-46 —-0-59 —0-55 -051 —033 —-044 —039 —-043
Leu —-023 —0725 —042 —-0-57 0-09 0-32 0-23 0-25 032 —-012 —-044 —-026 —046
Met —042 —0-57 —0-:38 0-24 0-29 043 0-32 —0-05 —010 —-021 —-028 —-0-14 —-0:52
Asn 0-28 0-41 0-02 —0-27 —0-53 —0-89 —0-77 -0-34 —0-40 0-05 0-06 0-03 0-10
Pro —013 0-26 0-05 0-02 —0-31 —091 —1-24 —1-28 —0-79 —048 —029 —004 0-37
Glin 0-21 0-01 0-02 —011 0-07 —0-04 —0-12 —0-33 —-067 —058 —047 —017 -0-04
Arg —0-13 0-02 0-03 0-14 0-25 0-19 —0-02 —-0-09 —-0-11  —013 —-0-10 0-04 0-02
Ser 0-41 0-44 0-25 —0-12 0-11 —0-12 —0-31 —0-28 0-03 0-27 0-34 0-41 0-43
Thr 0-33 0-35 0-22 0-00 0-03 0-49 0-17 0-08 —0-15 0-47 0-27 0-36 0-50
Val —0-07 —0-09 —-0-15 0-29 0-48 0-76 0-69 0-67 0-58 0-06 011 —0-18 0-00
Trp —-0-10 —-0-15 —0-19 —0-10 015 0-34 045 0-22 009 -0-22 —008 —0-01 -0-32
Tyr —0-10 0-15 0-05 0-18 0-29 0-42 077 0-53 034 —0-11 0-06 —0-08 0-35

021 —0-23 —-0-32 —0-50 —-0-71 —0-61 0-03 ~0-58 -032 —0-10 0-06 —0-25 —0-12

See Table 13.
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Table 15

Weights for coil

Window position

Amino
acid -6 -3 ] 3 6
Ala —006 —019 —-0-43 -0-19 —0-25 —0-27 —0-42 —0-24 —0-14 001 —030 —0-23 0-08
Cys 0-30 0-41 0-19 0-42 018 000 —018 —-038 —009 —031 003 019 037
Asp 0-15 0-09 -0-31 —0-27 0-60 0-54 0-95 0-65 0-66 0-78 0-44 0-34 0-04
Glu —002 —0-20 —0-41 —-0-22 —0-12 —0-12 —0-09 0-07 0-06 0-09 0-18 0-28 0-36
Phe 0-09 0-07 0-25 —-0-31 —0-29 —0-47 —0-39 -0-61 —-0-25 —-0-20 011 —0-02 0-34
Gly —0)-14 0-28 —0-21 0-17 0-09 1-14 1-24 0-85 0-36 014 012 014 —0-02
His —-0-07  ~-0-19 0-21 017 042 0-18 0-05 —-0-21 —0-31 —-056 —020 —0-22 —045
[le 0-26  —0-06 0-29 —0-34 —0-54 —~0-74 —-1-17 —0-65 —-0-51 —009 —0-07 042 0-09
Lys —042  —020 0-33 0-00 0-14 0-45 0-09 017 —0-14 —-043 0-06 —015 —027
Leu 0-04 0-34 —0-10 —0-22 —-0-55 —0-54 —0-69 —0-80 —0-80 —0-81 —018 —0-36 0-24
Met 0-25 0-45 —0-01 —0-53 —0-47 —0-76 —0-86 —-0-71 -0-56 —0-49 —0-44 —-0-19 0-16
Asn 0-:00 —0-38 0-00 0-17 0-61 0-71 0-81 0-45 035 —0-11 —-0-12 0-06 —0-06
Pro 0-31 0-04 0-28 0-14 0-89 1-40 1-77 2:27 1-59 1-14 077 0-78 016
Gin —0-08 0-04 0-14 —0-29 0-09 —0-08 —0-01 0-01 1 =013 0-24 0-47 0-48
Arg 0-06 0-17 0-06 —0-07 0-12 —0-40 —0-23 -0-04 021 —-013 —0:09 —0-20 -—-0-01
Ser -1 —0-23 —0-23 0-22 0-24 0-40 0-63 0-33 0-32 013 —009 —-029 -035
Thr —0-06 —0-02 —0-26 0-10 016 —0-10 0-29 013 021 —002 -027 —030 —-0-04
Val 0-04 0-05 —-0-10 —-0-33 —0-45 —0-86 —-1-32 —0-99 070 —0-11 —0-06 0-29 0-18
Trp 0-19 0-16 015 —-015 —044 —046 —037 —04¢ —017 -020 —009 —0-18 -0-06
Tyr 0-33 0-22 0-09 —-0-02 —0-19 —0-05 —0-41 —0-49 —0-35 0-10 —0-25 0-07 —-0-20
—-0-33 0-0] 0-54 1-00 1-04 0-76 —-0-21 0-84 1-05 0-41 0-49 024 —0-20
See Table 13.
Table 16
Weights in the second network
Window position
“ g -3 0 3 6
h 0-09 0-04 0-52 0-36 0-30 0-35 0-73 0-60 0-33 0-57 0-09 0-29 012
e —0-04 —0-11 —0-26 —0-32 —0-30 —-0-73 —-0-81 —0-50 —~0-55 —046 —0-24 013 —0-19
- 019  —0-03 0-10 —0-09 —0-19 —0-48 —0-97 —0-49 —-0-21 0-12 0-16 012 —0-20
Window position
) —6 -3 0 3 6
h —56 —0-33 —0-09 —0-11 —0-51 —0-73 —0-50 —0-39 —-0-10 —0-18 002 -025 -0-37
e 0-09 —0-08 0-42 0-44 0-64 1-15 1-58 0-78 0-46 0-08 —0-03 0-01 0-28
0-11 0-15 0-07 —0-01 —-0-02 —0-28 —1-12 —0-56 -0-20 —0-10 013 —0-06 0-11
Window position
Coil -6 -3 0 3 6
h 0-04 0-15 —0-32 -0-33 —0-02 —0-15 —0-58 —0-53 -036 —037 —0-17 —008 —-0-04
¢ —0-03 0-17 —0-27 —0-17 —0-36 —0-83 —1-40 —0-60 0-02 0-31 0-09 —0-08 0-02
- —0-23 0-14 —0-09 -0-18 0-09 0-60 1-42 0-60 0-28 0-08 —0-37 —-005 017

Weights for 2nd network without hidden units in a 2-network cascade. The sequence of 13 outputs from the Ist network are inputs
to the 2nd network, whose output is the corrected secondary structure of the centre amino acid. The biases for the output are —0-19
for the a-helix, —0-73 for the f-sheet and —0-04 for the coil. Performance of the network on the testing set of non-homologous proteins

(Table 2} was @, =64°C9,, where (;,=0-36, C;=0-31 and ; =0-42.

window only when the leading or trailing edge of
the protein is present).

The weights in Table 16 can be used to program
the second network in a two-network cascade. The
input to the second network is the value of the
three output units from the first network given in
Tables 13 to 15. The overall performance of these
cascaded networks is @3 =649, 0-39, less than the

figure quoted in Table 11, which was based on
networks that had 40 hidden units.
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